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PART I: 20 MULTIPLE CHOICE PROBLEMS

1. Find the sum 1 + 2− 3− 4 + 5 + 6− 7− 8 + · · ·+ 2009 + 2010− 2011− 2012 + 2013.

(A) 0 (B) 1 (C) 5 (D) -3 (E) None of the answers (A) through (D) is correct.

Solution: (B) 1 + 2− 3− 4 + 5 + 6− 7− 8 + · · ·+ 2009 + 2010− 2011− 2012 + 2013 =
(1 + 2− 3− 4) + (5 + 6− 7− 8) + · · ·+ (2009 + 2010− 2011− 2012) + 2013 = 503 · (−4) + 2013 = 1.

2. In 4ABC, m(∠ABC) = 140◦ and the points D and E lie on sides AB and AC, respectively. If lengths
AD, DE, EB, and BC are all equal, then the measure of ∠BAC is

(A) 5◦ (B) 6◦ (C) 7.5◦ (D) 8◦ (E) 10◦

Solution: (E) Let x = m(∠DAE) = m(∠DEA), y = m(∠EDB) = m(∠EBD), and z = m(∠BEC) =
m(∠BCE). Then y = 2x, z = x+ y = 3x. From 4ABC we get x+m(∠ABC) + z = 180. Hence,
x = 10.

3. The numbers a− b+ 2013, b− c+ 2013, and c− a+ 2013 are three consecutive integer numbers. Find
a− 3b+ 2c.

(A) −1 (B) 0 (C) 1 (D) −2 (E) 2

Solution: (A) Let a− b+ 2013 = n− 1, b− c+ 2013 = n, c−a+ 2013 = n+ 1. Then 3 · 2013 = 3n,
i.e. n = 2013. Hence a− b = −1, b− c = 0, and c− a = 1. Thus a = b− 1 and b = c which implies
a− 3b+ 2c = b− 1− 3b+ 2b = −1.

4. A circular disk is divided by 2n equally spaced radii (n > 0) and one secant line. The maximum number
of non-overlapping areas into which the disk can be divided is

(A) 2n+ 1 (B) 2n+ 2 (C) 3n− 1 (D) 3n (E) 3n+ 1

Solution: (E) A secant can cut across at most (n + 1) of the (2n) sectors, dividing each into two
parts. The total number of distinct areas is 2n+ (n+ 1) = 3n+ 1.

5. If 60a = 3 and 60b = 5, then 12
1−a−b
2(1−b) is

(A)
√

3 (B) 2 (C)
√

5 (D) 3 (E)
√

12

Solution: (B) 12 = 60
5 = 60

60b
= 601−b. So 12

1−a−b
2(1−b) = 60

1−a−b
2 =

√
60

60a·60b =
√

60
3·5 = 2.
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6. Let x and y be positive integer numbers such that 1
x −

1
y + 1

xy = 2
5 . Find 2x− 3y.

(A) 3 (B) 23 (C) −11 (D) −2 (E) None of the answers (A) through (D) is correct.

Solution: (C) 1
x −

1
y + 1

xy = 2
5 is equivalent to (2x − 5)(2y + 5) = −15. Hence, x = 2, y = 5 and

2x− 3y = −11.

7. If the sum of all angles except one in a convex polygon is 2190◦, then the number of sides of the polygon
is

(A) 12 (B) 14 (C) 15 (D) 16 (E) 17

Solution: (C) Let n denote the number of sides of the given convex polygon and let x be the number
of degrees in the excepted angle. Then 180(n−2) = 2190+x. From here we have n−2 = 12+ 30

180+ x
180 .

Hence, n = 15.

8. Let z and w be complex numbers such that |z| = |w| = |z − w|. Find
(
z
w

)2013
.

(A) −1 (B) 1 (C) 1
2 +

√
3
2 · i (D) 1

2 −
√
3
2 · i (E) i

Solution: (A) Let z
w = u = x + i · y. Then |u| = |u − 1| = 1, which implies x2 + y2 = 1 and

(x − 1)2 + y2 = 1. Thus, x = 1
2 and y = ±

√
3
2 , i.e. u = 1

2 ±
√
3
2 · i. Therefore,

(
z
w

)2013
=((

1
2 ±

√
3
2 i
)3)671

= (−1)671 = −1.

9. Let x1 and x2 be real roots of the equation x2 − x+ q = 0, where q is a real number. For which values
of q, the expression x41 + x42 has minimum value?

(A) 1
4 (B) 1 (C) 0 (D) −1 (E) None of the answers (A) through (D) is correct.

Solution: (A) The equation x2−x+q = 0 has real roots if 1−4q ≥ 0, i.e. q ≤ 1
4 . Since x1 +x2 = 1

and x1x2 = q, we have x41 +x42 =
(

(x1 + x2)
2 − 2x1x2

)2
−2(x1x2)2 = (1−2q)2−2q2 = 2(q−1)2−1.

Hence, x41 + x42 is decreasing on (−∞, 14 ], so x41 + x42 has minimum for q = 1
4 .

10. Let f : R → R be a function defined by f(x) = ax5 + bx3 + cx − 7 where a, b, and c are real numbers.
If f(−5) = 5, find f(5).

(A) −5 (B) 10 (C) 5 (D) 12 (E) None of the answers (A) through (D) is correct.

Solution: (E) Since f(5) = a · 55 + b · 53 + c · 5− 7 and f(−5) = a · (−5)5 + b · (−5)3 + c · (−5)− 7,
we get f(5) + f(−5) = −14. Hence, f(5) = −19.

11. A drawer contains 10 socks, 6 red, 4 blue. If 4 socks are pulled from the drawer at random, what is the
probability that there are more red socks than blue socks?

(A) 5
21 (B) 19

42 (C) 1
2 (D) 3

5 (E) 31
42
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Solution:

(B) There are
(
10
4

)
= 210 possible sets of 4 socks. If there are more red socks, there are either 4 or

3 red. There are
(
6
4

)
+
(
6
3

)
·
(
4
1

)
= 15 + 80 = 95. 95

210 = 19
42 .

12. Let

U(n) =

{
n/2 if n is even

3n+ 1 if n is odd

For how many distinct positive integers, n, is U(U(U(U(U(n))))) = 1?

(A) 2 (B) 3 (C) 4 (D) 5 (E) 8

Solution:

(B) U(U(U(U(U(n))))) = 1, U(U(U(U(n)))) = 2, U(U(U(n))) = 4, U(U(n)) = 1 or 8, U(n) =
2, or 16, n = 4, 5, or 32. So there are 3 such n’s.

13. Two candles of the same length are made of different materials so that one burns out completely at a
uniform rate in 3 hours and the other, in 4 hours. At what time P.M. should the candles be lightened
so that, at 4:00 P.M., one stub is twice the length of the other?

(A) 1:24 (B) 1:28 (C) 1:36 (D) 1:40 (E) 1:48

Solution: (C) Let t represent the number of hours before 4:00 P.M. so that at 4:00 P.M., one stub is
twice the length of the other. Let l be the original length of the candles. Hence, l− t

4 l = 2
(
l − t

3 l
)
.

Thus, t = 2 2
5 . Therefore, the candles should be lighted 4 − 2 2

5 = 1 3
5 hours after noon, i.e. at 1:36

P.M.

14. Evaluate the sum

sin2(1◦) cos2(1◦) + sin2(2◦) cos2(2◦) + sin2(3◦) cos2(3◦) + . . .+ sin2(44◦) cos2(44◦) + sin2(45◦) cos2(45◦)

(A) 23
8 (B) 45

8 (C) 23
4 (D) 45

4 (E) 23
2

Solution: (C) Let Σ be the sum. By the double angle identity of sin(2a) = 2 sin(a) cos(a),

Σ =
sin2(2◦)

4
+

sin2(4◦)

4
+

sin2(6◦)

4
+ · · ·+ sin2(88◦)

4
+

sin2(90◦)

4
.

sin(0◦) = 0, so Σ =
sin2(0◦)

4
+

sin2(2◦)

4
+

sin2(4◦)

4
+

sin2(6◦)

4
+ · · ·+ sin2(88◦)

4
+

sin2(90◦)

4
.

By the identity sin2(a) = cos2(90◦ − a), Σ =
sin2(0◦)

4
+

sin2(2◦)

4
+

sin2(4◦)

4
+

sin2(6◦)

4
+ · · · +

sin2(44◦)

4
+

cos2(44◦)

4
+ · · ·+ cos2(2◦)

4
+

cos2(0◦)

4
.

Combining this with the Pythagorean identity of sin2(a) + cos2(a) = 1, Σ =
23

4
.
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15. Find the product of all real solutions of the equation (x2 + 3x− 4)3 + (2x2− 5x+ 3)3 = (3x2− 2x− 1)3.

(A) −6 (B) −4 (C) − 1
2 (D) 2 (E) 4

3

Solution: (D) Let a = x2 + 3x− 4 and b = 2x2 − 5x+ 3. Then a+ b = 3x2 − 2x− 1, so the given
equation is equivalent to a3 + b3 = (a+ b)3, i.e. 3ab(a+ b) = 0. Hence a = 0 or b = 0 or a+ b = 0.
If a = 0, then x2 + 3x − 4 = 0, and the solution of this equation are x = 1 and x = −4. If b = 0,
then 2x2 − 5x + 3 = 0, and the solution of this equation are x = 3

2 and x = 1. If a + b = 0, then
3x2 − 2x− 1 = 0, and the solution of this equation are x = 1 and x = − 1

3 . Therefore the solutions
of the given equation are x = 1, x = −4, x = 3

2 , and x = − 1
3 , and their product is 2.

16. Determine all real values of a such that the equation 2a(x+1)2−|x+1|+1 = 0 has exactly four distinct
real solutions.

(A) a = 1
8 (B) |a| < 1

8 (C) a < 1
8 (D) 0 < a < 1

8
(E) None of the answers (A) through (D) is correct.

Solution: (D) Let t = |x + 1|. The given equation has four distinct real solutions if and only if
the equation 2at2 − t + 1 = 0 has two distinct real solutions. The last equation has two distinct

real solutions if 1 − 8a > 0, i.e. a < 1
8 . The solutions of at2 − t + 1 = 0 are t1 = 1−

√
1−8a
4a and

t2 = 1+
√
1−8a
4a . Since t = |x + 1|, we have t1, t2 > 0. If a < 0, then t2 < 0, which contradicts

t1, t2 > 0. Therefore, 0 < a < 1
8 .

17. Let a1, a2, a3, . . . , a2013 be a geometric sequence with positive terms such that a1 + a2 + · · ·+ a2013 = 2
and 1

a1
+ 1

a2
+ · · ·+ 1

a2013
= 1. Find the product a1a2 · · · a2013.

(A) 21006
√

2 (B) 21006 (C) 21007 (D) 21007
√

2
(E) None of the answers (A) through (D) is correct.

Solution: (A) Let q be the quotient of a geometric sequence that satisfies a1+a2+· · ·+a2013 = 2 and
1
a1

+ 1
a2

+· · ·+ 1
a2013

= 1. Then a1(q
2013−1)
q−1 = 2. If we divide the equation 1

a1
+ 1
a2

+· · ·+ 1
a2013

= 1 by q,

we get 1
a2

+ 1
a3

+· · ·+ 1
a2013

+ 1
qa2013

= 1
q . From the last two equations we get a1q

2012(q−1) = q2013−1,

and from this equation and a1(q
2013−1)
q−1 = 2, we get a1007 = a1q

1006 =
√

2. Since a1a2013 = a2a2012 =

. . . = a1006a1008 = a21007 = 2, we get a1a2 · · · a2013 = (a1a2013)(a2a2012) · · · (a1006a1008)a1007 =
21006

√
2.

Note: A geometric sequence with the given properties does not exist!

18. What is the remainder when P (x) = 1−2x+3x2−4x3+ · · ·+99x98−100x99 is divided by Q(x) = x2−1?

(A) 2550x+ 2500 (B) −2550x+ 2500 (C) 2550x− 2500 (D) −2550x− 2500
(E) None of the answers (A) through (D) is correct.

Solution: (B) Let R(x) = ax + b be the reminder obtained when P (x) is divided by Q(x). Then
P (x) = S(x)Q(x) +R(x). Notice that P (1) = −50, P (−1) = 5050, Q(1) = Q(−1) = 0. Thus, from
P (1) = S(1)Q(1)+R(1) and P (−1) = S(−1)Q(−1)+R(−1), we get a+b = −50 and −a+b = 5050.
Hence, a = −2550 and b = 2500, and the reminder R(x) is −2550x+ 2500.
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19. Find the product of the solutions of the equation log2(40− 5x2 + x2 · 2x) = x+ 3.

(A) −8 log2 5 (B) log2 58 (C) log2 40 (D) −64 log2 5
(E) None of the answers (A) through (D) is correct.

Solution: (A) The given equation is equivalent to 40−5x2+x2 ·2x = 2x+3, i.e. (8−x2)(5−2x) = 0.
Thus, the roots of the equation are

√
8, −
√

8, and log2 5, and their product is −8 log2 5.

20. The lengths of the sides of a triangle are consecutive integers and the largest angle is twice the smallest
angle. What is the cosine of the smallest angle?

(A) 3
4 (B) 7

10 (C) 2
3 (D) 9

14 (E) None of the answers (A) through (D) is correct.

Solution: (A) Let θ be the smallest angle in the triangle and let n be the length of its shortest
side. Using the law of sines we have sin θ

n = sin 2θ
n+2 = 2 sin θ cos θ

n+2 which gives cos θ = n+2
2n . Using the

law of cosines we get n2 = (n+ 1)2 + (n+ 2)2 − 2(n+ 1)(n+ 2) cos θ, so cos θ = −n2+(n+1)2+(n+2)2

2(n+1)(n+2) .

Then n+2
2n = −n2+(n+1)2+(n+2)2

2(n+1)(n+2) = (n+1)(n+5)
2(n+1)(n+2) = n+5

2(n+2) . So n = 4 and cos θ = 3
4 .

PART II: 10 INTEGER ANSWER PROBLEMS

1. Let x, y, z, and k be real numbers such that

7

x+ y
=

k

x+ z
=

11

z − y
.

Find the value of k.

Solution: Answer: 18. If we substract the equation 7(z− y) = 11(x+ y) from 7(x+ z) = k(x+ y),
we get 7(x+ y) = (k − 11)(x+ y). Since x+ y 6= 0, we get k − 11 = 7, i.e. k = 18.

2. Let A be a set consisting of m (m 6= 0) consecutive integer numbers whose sum is 2m and let B be a
set consisting of 2m consecutive integer numbers whose sum is m. Find the value of m if the difference
between the largest element in B and the largest element in A is 99.

Solution: Answer: 201. Let a+ 1, a+ 2, . . . , a+m be the elements in A and b+ 1, b+ 2, . . . , b+ 2m

be the elements in B. Then ma + m(m+1)
2 = 2m and 2mb + 2m(2m+1)

2 = m. From the last two
equations we get a = 3−m

2 and b = −m. Since (b+ 2m)− (a+m) = 99, we get m = 201.

3. How many integer numbers between 10,000 and 99,999 are there such that all of their digits are distinct
and the absolute value of the difference between the first and the last digit is 2?

Solution: Answer: 5040. From the set {0, 1, . . . , 9} there are sixteen pairs of numbers whose
difference is ±2 ({(0, 2), (2, 0), (1, 3), (3, 1), . . . , (7, 9), (9, 7)}). Only the pair of digits (0, 2) can’t be
used as first digit 0 and last digit 2. For each of the 15 ordered pairs there are 8 · 7 · 6 = 336 ways to
fill the remaining middle three digits. Thus there are 15 · 336 = 5040 numbers of the required form.
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4. Find the greatest common divisor of 22015 + 1 and 22013 + 1.

Solution: Answer: 3. Let d be the greatest common divisor of 22015 + 1 and 22013 + 1. Then d is a
divisor of their difference 22015 + 1−22013−1 = 3 ·22013. Since both numbers 22015 + 1 and 22013 + 1
are odd, it follows that d = 1 or d = 3. Since 3 divides both of them, it follows that d = 3.

5. Let the product 12 · 15 · 16, each factor written in base b, equal 3146 in base b. Let s = 12 + 15 + 16,
each term expressed in base b. What is s in base b?

Solution: Answer: 44. The product 12 ·15 ·16 = 3146 (base b) can be written and (b+2)(b+5)(b+
6) = 3b3 + b2 + 4b+ 6. Then b3 − 6b2 − 24b− 27 = 0, i.e. b = 9. Hence, s = 44 in base b.

6. Let A, B, C, and D be the vertices of a regular tetrahedron, each of whose edges measures 1 meter. A
bug, starting from vertex A, observes the following rule: at each vertex it chooses one of the three edges
meeting at that vertex, each edge being equally likely to be chosen, and crawls along the edge to the
vertex at its opposite end. Let n

2187 be the probability that the bug is at vertex A when it has crawled
exactly 8 meters. Find the value of n.

Solution: Answer: 547. Let an be the probability that the bug is at vertex A after crawling exactly
n meters, n = 0, 1, 2, . . .. Then an+1 = 1

3 (1− an) because the bug can be at vertex A after crawling
n + 1 meters if and only if it was not at A after crawling n meters (this has probability 1 − an)
and from one of the other vertices it heads toward A (this is probability 1

3 ). Since a0 = 1, we have
a1 = 0, a2 = 1

3 , a3 = 2
9 , a4 = 7

27 , a5 = 20
81 , a6 = 61

243 , a7 = 182
729 , and a8 = 547

2187 .

7. Find the sum of all positive integer numbers n such that n(n+ 16) is a square of an integer number.

Solution: Answer: 11. Since n2 < n(n+ 16) < (n+ 8)2, we get that n = 2 and n = 9. Their sum
is 11.

8. In a tournament each player played exactly one game against each of the other players. In each game
the winner was awarded 1 point, the loser got 0 points, and each of the players earned 1

2 point if the
game was a tie. After the completion of the tournament, it was found that exactly half of the points
earned by each player were earned in games against the ten players within the least number of points.
What is the total number of players in the tournament?

Solution: Answer: 25. Let n be the number of players in the tournament. The total number of

points earned at the tournament os equal to the total number of games played, which is n(n−1)
2 . We

will count the total number of points in another way. The ten lowest scoring players played exactly
10·9
2 = 45 games between each other; however, this is only a half of the total points that the ten

lowest scoring players earned at the tournament. The total number of points that the then lowest

ranked players earned is 90. The players that were not ranked in the lowest ten played (n−10)(n−11)
2

games between each other, and therefore, they accumulated (n−10)(n−11)
2 points only when playing

with each other. This is again a half of the total points earned by the players that were not ranked
in the lowest ten. The other half of the points is from the games with the lowest ten players. So, the
total number of points, counted differently, is 90 + (n− 10)(n− 11). Therefore, we get the equation

6



90+(n−10)(n−11) = n(n−1)
2 , and the solutions of this equation are n = 16 and n = 25. We discard

the solution n = 16: if they were only 16 players, then there would have been only 6 players that are
not ranked in the 10 lowest, and the total number of points that these 6 players have earned would
be 30, resulting in an average of 5 points for each of them. This is less that the average of 9 points
gathered by the 10 lowest ranked players. Therefore, there were 25 players in the tournament.

9. Let ABCD be a quadrilateral and let P be the intersection point of the diagonals AC and BD. Let
∠ADB = 2∠ACB, AD = BD = 3, and BP = 1. What is the product of the length of the segments AP
and CP?

Solution: Answer: 5. Because we are asked to find the product of portions of line segments, we
might be suspicious that one of the secant theorems is involved. But the secant theorems require a
circle. Construct a circle with center at D and radius AD = BD = 3. Let E be the intersection of
the line BD with the circle. The point C must be on the circle because ∠APB = 2∠ACB. Then,
by the Internal Secant Theorem, AP · CP = EP · PB = 5 · 1 = 5.

10. Let a and b be relatively prime positive integer numbers such that a
b is equal to the sum of all the real

solutions of the equation 3
√

3x− 4 + 3
√

5x− 6 = 3
√
x− 2 + 3

√
7x− 8. Find a+ b.

Solution: Answer: 13. Let a = 3
√

3x− 4, b = 3
√

5x− 6, c = 3
√
x− 2, and d = 3

√
7x− 8. Then

a− c = d− b and a3− c3 = d3− b3. From the equations (a− c)3 = (d− b)3 and a3− c3 = d3− b3 we
get ac(a− c) = db(d− b). This implies ac = db or a− c = d− b = 0; the second equation gives x = 1.
From ac = db we get 3

√
3x− 4 3

√
x− 2 = 3

√
7x− 8 3

√
5x− 6, which is equivalent to 4x2 − 9x+ 5 = 0.

The solutions of the last quadratic equations are x = 1 and x = 5
4 and their sum is 9

4 . Hence,
a+ b = 13.

The following problem, will be used only as part of a tie-breaking procedure. Do not work on it until
you have completed the rest of the test.

TIE BREAKER PROBLEM

The numbers in the sequence 101, 104, 109, 116, . . . are of the form an = 100 + n2 where n = 1, 2, 3, . . ..
For each positive integer n, let dn be the greatest common divisor of an and an+1. Find the maximum value
of the sequence {dn} as n ranges through the positive integers.

Solution: Answer: 401. If dn divides 100 + (n+ 1)2 and 100 + n2, then it divides their difference, i.e.
dn|(2n+1). Since 2(100+n2) = n(2n+1)+(200−n), dn|(100+n2), and dn|(2n+1), we get dn|(200−n).
Hence, dn|((2n+ 1) + 2(200− n)), i.e. dn|401. Thus, 401 is the largest possible value of dn. If n = 200,
then a200 = 100 · 401 and a201 = 101 · 401. Therefore, the maximum value of the sequence {dn} is 401.
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