

$$$$

(a) The quadratic function
$$f(x) = ax^2 + bx + c$$
 is known to pass through the points
(-1, 6), (7, 6), and (1, -6). Find the smallest value of the function:
(a) -36 (b) -26 (c) -20 (d) -10 (e) -6
(f) If $f(x) = x + 2$ and $g(x) = \sqrt{x}$, then $f^{-1} \circ g^{-1}(2)$ is
(a) 8 (b) -6 (c) 2 (d) 6 (e) -2
(f) How many integers a satisfy the equation $(x^2 - 5x + 5)^{x^{4} \cdot 9x + 20} = 1?$
(a) 2 (b) 3 (c) 4 (d) 5 (e) none of a) through (d) is correct
(f) If $fA = 20^{\circ}$ and $B = 25^{\circ}$, then the value of $(1 + (an A)(1 + tan B) is$
(a) $\sqrt{3}$ (b) 2 (c) $1 + \sqrt{2}$ (d) 4 (e) none of a) through (d) is correct
(f) The base there representation of x is 12112211122221 . Find the first digit (on
the left) of the base nine representation of x .
(a) 1 (b) 2 (c) $3 - d$ (d) $- g$ (c) 5
(f) Let $f(n) = \left(\frac{1+2}{\sqrt{2}}\right)^n + \left(\frac{1-2}{\sqrt{2}}\right)^n$, where $i^2 = -1$. Determine the value of $f(2006) + f(2016)$.
(a) 0 (b) $\frac{21}{\sqrt{2}}$ (c) $i = d$ (d) $\frac{2}{\sqrt{2}}$ (c) $-\frac{2i}{\sqrt{2}}$
(f) As containe 2 pennies, 4 takels, and 6 dimes. Six coins are drawn without re-
placement, with each coin having equat probability of being chosen. What is the
probability that the value of the coins drawn is at lease 50 cents!
(a) $\frac{37}{204}$ (b) $\frac{91}{244}$ (c) $\frac{127}{924}$ (c) $\frac{123}{927}$ (c) none of s) through (d) is correct
(f) The degend a regular tercalerization unit vertices $A, B, C, and D$ each have length
one here $d_B A$ and Q is on the edge CD .
(a) $\frac{1}{2}$ (b) $\frac{3}{4}$ (c) $\frac{\sqrt{2}}{2}$ (c) $\frac{\sqrt{3}}{2}$ (c) $\frac{\sqrt{3}}{3}$

If the radius of the larger circle is 3, and if a, b, a + b is an arithmetic sequence, then the radius of the smaller circle is (16) A circle with an area a is contained in the interior of a larger circle with an area a + b. Y. a) $\frac{\sqrt{3}}{2}$ b) 1 c) $\frac{2}{\sqrt{3}}$ d) $\frac{3}{2}$ e) $\sqrt{3}$ (17) Let f: R → R be a function such that f(x + y) = f(xy) for all real numbers x and y, and f(7) = 7. Find the value of f(49).
a) 1 b) 49 c) 7 d) 14 e) none of a) through d) is correct N. (18) Equilateral triangle $\triangle ABC$ is inscribed in a circle. A second circle is tangent inter-N. nally to the circumcircle at T and tangent to sides AB and AC at points P and Q. multille # # 3 stitute the the Determine the length of the segment PQ if side BC has length 12. a) 6 b) $6\sqrt{3}$ c) 8 d) $8\sqrt{3}$ e) 9 (19) Two points are picked at random on the unit circle x² + y² = 1. What is the probability that the chord joining the two points has length at least 1?
a) ¹/₄ b) ¹/₂ c) ³/₄ d) ¹/₃ e) ²/₃ Withthe ## # 18 Ro (20) Let x, y, and z be positive real numbers such that x + y + z = 1 and $xy + yz + xz = \frac{1}{3}$. The number of possible values of the expression $\frac{x}{y} + \frac{y}{z} + \frac{z}{x}$ is a) 1 b) 2 c) 3 d) more than 3 but finitely many e) infinitely many 面动机能称林塔 x 1/3 1/2 Y. Astitute the the " I the N. PART II: 10 INTEGER ANSWER PROBLEMS (1) How many times does the prime factor 7 appear in the prime factorization of 1001 · 1002 · 1003 · · · 2009 · 2010? maximue ## # '& P& 而如此他称林等除 matitute ## # 'S PR militute # # '# P

multinu m X 3

multinu m # 3

mutilite # # "

R.

Ro

to the W- 1/2 Ph

to the W. B. M.

multille m # 3

Institute mark "

(2) A road construction unit is made up of a certain number of workers and a certain additional units are needed if the remaining 50 mi of the road must be paved in 15 days?

林 林 洛

to the the 's the

to the the By the

to the the By the

3

Institute ##

where $\lfloor x \rfloor$ is the greatest integer less than or equal to x. (4) Find the small (3) Find the positive integer n for which $\lfloor \log_2 1 \rfloor + \lfloor \log_2 2 \rfloor + \lfloor \log_2 3 \rfloor + \dots + \lfloor \log_2 n \rfloor = 153$ (4) Find the smallest positive integer n for which none of the following fractions

multille # ** *

multilite # # *

Institute # ** *

Withthe Mar H. 'S PR

Withthe ## # 18

the the B We

Withte # # 3 PR

to the the 's the

$$\frac{7}{n+9}, \frac{8}{n+10}, \frac{9}{n+11}, \dots, \frac{31}{n+33}$$

is reducible.

Institute # ** *

tinstitute ## #

- the statistic the statistical statisticae (5) In trapezoid ABCD, side AB is parallel to side DC, and diagonals AC and BDintersect at P. If the area of $\triangle APB$ is 4 and the area of $\triangle DPC$ is 9, determine the area of the trapezoid ABCD.
 - (6) If x is measured in radians, how many roots are there to the equation $\sin x = \frac{x}{100}$?
 - (7) In what base is 221 a factor of 1215?
 - (8) Determine the area of the polygon whose vertices are all the points on the circle $x^2 + y^2 = 100$ where both coordinates are integers. matine # # 'S PR

(9) How many ordered pairs of integer numbers (x, y) satisfy the equation

$$\arctan \frac{1}{x} + \arctan \frac{1}{y} = \arctan \frac{1}{10}?$$

Note: $\arctan z$ is the same as $\tan^{-1} z$.

(10) Find the product of all distinct real solutions of the equation itute \$

 $(x^{2}-3)^{3} - (4x+6)^{3} + 216 = 18(4x+6)(3-x^{2}).$

If this equation has any repeated solutions, use them only once in the product.

Y. The following problem, will be used only as part of a tie-breaking procedure. Do not work Astitute the the on it until you have completed the rest of the test.

TIE BREAKER PROBLEM

Withthe Mar H & B

Find the sum of the real solutions of the equation Anithite # # 18 $\log_2\left(-x^2 + 7x - 10\right) + 3\sqrt{\cos\left(\pi\sqrt{x^2 + 7}\right) - 1} = 1.$

Aritante ## # 18

to the W. B.

withthe \$6 # 3 PS

to the We B

Y.

Y.

Ro

Y.

Y.

Y.

Y.

面的机能称林塔张

to the the B. Ph

TUNITING W X 3

4