NC STATE MATHEMATICS CONTEST – APRIL 2009: SOLUTIONS

Institute the the 's

institute # *****

minitule # # **

mstitute ##

multilite m # "

to the the B

Y.

to the W. B. M.

the the the

Institute # # **

Y. 1. Answer e): $A = 2\pi r h = 2\pi r \left(\frac{24}{(\pi r^2)} \right) = \frac{48}{r}$ which has no minimum for r > 0. 2. Answer a): The vertices of the triangle are (2a/3, 2a/3), (a, 0) and (2a, 2a). The area is $2a^2/3$. 3. Answer **a**): If |AB| = 1, ABCDEF has area $3\sqrt{3}/2$ and $|AC| = \sqrt{3}$ so ACE has area $3\sqrt{3}/4$. 4. Answer **b**): $\tan^{-1}(2\sin(2\pi/3)) = \tan^{-1}(\sqrt{3}) = \pi/3$. 5. Answer **d**): {TT, HTT, THT, HHTT, HTHT, THHT} has probability 1/4 + 1/4 + 3/16 = 11/16. 6. Answer **b**): 3s/(s/10 + s/15 + s/20) = 13 + 11/127. Answer c): $x^2 + y^2 = y^2 (1 + \tan^2(t)) = y^2 \sec^2(t) = xy \frac{y}{x} \sec^2(t) = \frac{\sin(2t)}{\tan(t)} \sec^2(t) = \frac{2\sin(t)\cos(t)}{\sin(t)\cos(t)} = 2$. Y. 8. Answer d): The plane enters the cylinder at (3, 0, 5/2) and leaves the cylinder at (-3, 0, 11/2). The total surface area is that of a cylinder with r = 3 and h = 5/2 plus one-half that of a cylinder with r = 3and h = 3and h = 3. 9. Answer d): With G = the value of the gft: $c + \frac{a+b}{2} = b + \frac{a+c}{3} = a + \frac{b+c}{4} = G$. It follows that the N. mistitute \$60 \$4 value of c is 5G/17 so 17 divides G and $17 \times 5.88 = 99.96$. 10. Answer c): $(x^2 - 1)^2 = y^2$ so $y = \pm (x^2 - 1)$. 11. Answer **b**): $\ln(4 + \sqrt{15}) = -\ln(4 - \sqrt{15})$ and $\ln\left(\frac{4 + \sqrt{15}}{4 - \sqrt{15}}\right) = \ln(31 + 8\sqrt{15})$. 而时间很新林等除 12. Answer **d**): The mean of the remaining numbers is $\frac{N \cdot N - M \cdot M}{N - M} = N + M$. 13. Answer **e**): $2r_1 = 2r_2 + 10 \& r_2^2 = (r_1 - r_2)^2 + (r_1 - 6)^2 \implies r_1 = 18 \& r_2 = 13. \ 18^2 - 13^2 = 155.$ 14. Answer **a**): Using a + b = -3 & ab = 5, $m = \frac{(a+2)^2 + (b+2)^2}{(a+2)(b+2)} = \frac{-5}{3}$ N. 15. Answer c): Only 2 of the $2^8 = 256$ possible colorings have the desired property. 2/256 = 1/128. 16. Answer **d**): The value of the determinant is 6 + y - 5x, and, with y = 4 + 5k, x = 2 + k, the 17. Answer e): -g(x) and g(-x) both satisfy (J). F(-F(x)) = F(g(-x)) = -g(-g(-x)), if F(x) = -g(-x). Now, -g(-g(-x)) = -g(-x). Y. F(x) = -g(-x). Now, -g(-g(-x)) = -x if g(-x) = -g(x) but $-g(-g(-x)) \neq -x$, if, for example, g(x) = 1 - x which does satisfy (I). Institute # # '& PS Y.

OVER FOR SOLUTIONS TO THE REMAINING MULTIPLE CHOICE PROBLEMS AND THE INTEGER ANSWER PROBLEMS.

to the the 's

to the the B Ph

to the the of the

18. Answer **a**): It follows from $3r^2 = (a-4)/a \& -r^3 = 2/a$ that $r(a-4)/(3a) = r^3 = -2/a$ so that Mytille # # 3 PE

Institute # # "

mistille # ** **

mittel the starts

面如加根林塔塔 r = 6/(4-a). Then $3(36a) = (a-4)^3$ which has solutions a = -2 and 16.

Institute # # "

19. Answer **a**): $1 - \frac{(n+2)(n+1)}{(2n+2)(2n+1)} = \frac{3n}{4n+2} < \frac{3}{4}$ for every *n*.

Institute # ** *

multille m # "

Y.

Ro

Y.

20. Answer b): If E is the triangle's vertex on BC, then $|AE| = 1/\cos(\pi/12) = 1/\cos(\pi/3 - \pi/4) =$

$$4/(\sqrt{2} + \sqrt{6}) = \sqrt{6} - \sqrt{2}$$
. OR $|BE|^2 + 1 = 2|EC|^2$ & $|BE| + |EC| = 1$. Then $|BE| = 2 - \sqrt{3}$ and $|AE| = \sqrt{1 + (2 - \sqrt{3})^2}$ which does equal $\sqrt{6} - \sqrt{2}$.

Integer Answer Problems

- 1. Answer: **14** Since $i^2 + j^2 = m^2 + n^2$ with $1 \le i \le 4 \And 0 \le j \le i$ and $1 \le m \le 4 \And 0 \le n \le m$, implies that i = m & j = n, the number of distinct distances is 2 + 3 + 4 + 5 = 14. institute ##
- 2. Answer: **120** r = (1 1/2 1/3 1/15)t = t/10 & $r + 6 = 3t/20 \Rightarrow t = 120$
- 3. Answer: **360** $(5!) + C(5,2)(4 \cdot 3 \cdot 2) = 360$.
- 4. Answer: **16,000** With a = value of the car, 7(a + c + 18000)/12 = a + 5000 and N. 8(a+c+18000)/12 = a+c+6000, so that a = 16,000 and c = 2000.
 - 5. Answer: 20 We want n with number of divisors equal 3, 5, 7, 11, [Not 2 because if n has 2 divisors, *n* is prime.] *n* must be a prime power if *n* has a prime number of divisors. Then *n* must be $2^{2}, 2^{4}, 2^{6}, 2^{10}, 3^{2}, 3^{4}, 3^{6}, 5^{2}, 5^{4}$ or p^{2} with p = 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43.
 - 6. Answer: 8 $1 = \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a & 7-a \\ 9-d & d \end{bmatrix} \Rightarrow 9a + 7d = 64$. It follows that a = d = 4.

7. Answer: **1089** $1000d_0 + 100d_1 + 10d_2 + d_3 = 9(d_0 + 10d_1 + 100d_2 + 1000d_3) \Rightarrow d_0 = 9 \& d_3 = 1$. Then $100d_1 + 10d_2 + 1 = 81 + 90d_1 + 900d_2 \implies d_2 = 0 \& d_1 = 8$

8. Answer: **300** Let w(h) be the width (height) of the rectangle, and let H be the height of the triangle, with its hypotenuse as base. Then w/50 = (H - h)/H. So, wh = 50(H - h)h/H which is

maximized when $h = \frac{H}{2} = \frac{1}{2} \left(\frac{(30 \cdot 40)/2}{50/2} \right).$

to the W- 13 1%

9. Answer:
$$\mathbf{1} \quad \frac{z_j}{1+z_j^2} = \frac{z_j^4}{1+z_j^3} \& \frac{z_j^2}{1+z_j^4} = \frac{z_j^3}{1+z_j} \text{ so } w_j = 2\left(\frac{z_j}{1+z_j^2} + \frac{z_j^2}{1+z_j^4}\right) = 2\left(\frac{z_j(1+z_j^4) + z_j^2(1+z_j^2)}{(1+z_j^2)(1+z_j^4)}\right) = 2\left(\frac{1+z_j+z_j^2+z_j^4}{1+z_j+z_j^2+z_j^4}\right) = 2 \text{ for each } j.$$

10. Answer: **8039** There are 2000 integers between 1 and 8000 inclusive whose digit sum is divisible by 资本 4. The next 9 such integers are 8004, 8008, 8013, 8017, 8022, 8026, 8031, 8035 and 8039.

the the st is

TIE BREAKER ANSWER: 119

to the the By the

to the the the the

to the the B

Ro

to the W- B. Ph