1. C If
$$p = \frac{1}{3}$$
, then $p > p^2$ since $\frac{1}{3} > \left(\frac{1}{3}\right)^2 = \frac{1}{9}$, so ** is primed.
2. B SB9 is divisible by 9 when B = 4. Then 2A3+326=549 \ge 2A3=223 and A=2, so $A+B=2+4=6$.
3. A St+12y=60 \Rightarrow y=5 $-\frac{5}{12}x$, so $\sqrt{x^2+y^2} = \sqrt{x^2+(5-5x)^2} = \sqrt{4x^2+x^2+2x}$. A graphing calculator shows the minimum value of this expression is approximately 4.6153846. The closest rational choice to this approximation $\frac{60}{13}$. To see that this is actually an approximation for a rational number, it is possible to re-express $\sqrt{\frac{1}{16}x+\frac{2}{3}x^2+\frac{2}{2}x^2} = \sqrt{\frac{1}{16}(x+\frac{2}{3})^2 + \left(\frac{25-164}{169}\right)^2}$. When the term involving the $\sqrt{\frac{1}{16}x+\frac{2}{3}x^2} = \sqrt{\frac{1}{16}(x+\frac{2}{3})^2 + \left(\frac{25-164}{169}\right)^2}$. When the term involving the $\frac{1}{13}$.

multilite # ** *

Institute # # .3

mistitute \$5 TA- 3

The surface area is the sum of the areas of the solid's six faces. The top and bottom of $\sqrt{2}$ multilite # # # Ro each have area $8 \times 4 = 32$, the front and back each have area $8 \times 2 = 16$, and each side has area $4 \times 2 = 8$. So the surface area of the new solid is 2(32) + 2(16) + 2(8) = 64 + 32 + 16 = 112. Since k is odd, f(k) = k+3. Since k+3 is even, $f(k+3) = f(f(k)) = \frac{k+3}{2}$. If $\frac{k+3}{2}$ is multine m # ' K odd, then $27 = f(f(f(k))) = f(\frac{k+3}{2}) = \frac{k+3}{2} + 3$, which implies that k = 45. This is not possible because f((f(45))) = f(f(48)) = f(24) = 12. Hence $\frac{k+3}{2}$ must be even, and $27 = f(f(f(k))) = f(\frac{k+3}{2}) = \frac{k+3}{4}$, which implies that k = 105. Checking, we N. mistine # # * find that f((f(105))) = f(f(108)) = f(54) = 27. Hence the sum of the digits of k is 19. C Since E(100) = E(00), the result is the same as $E(00) + E(01) + E(02) + \dots + E(99)$, which is the same as $E(00010203 \dots 99)$. There are 200 digits, and each digit occur. Contact the sum of the even digits is 20%. N. is the same as E(00010203...99). There are 200 digits, and each digit occurs 20 times. So 20. D matine # # 13 PR $29 + D = 30 + B \Rightarrow D - B = 1$, $14 + B + D = 30 + B \Rightarrow D = 16$. So $D - B = 1 \Rightarrow 16 - B = 1 \Rightarrow B = 15$. B & 21. $f(g(x)) = f(|2x+3|) = |2x+3|^2 - 1 = |4x^2 + 12x + 9| - 1$ and 22 $g(f(x)) = g(x^{2}-1) = |2(x^{2}-1)+3| = 2x^{2}+1. \text{ So } f(g(3)) = 80, g(f(2)) = 9,$ g(f(-1)) = 3 f(g(-5)) - 40 = 1 (12) g(f(-1)) = 3, f(g(-5)) = 48, and g(10) = 23, so f(g(3)) has the largest value. Ro 23. С The 11 such integers with no partners in the set are 5, 7, 11, 13, 14, 15, 17, 19, 21, 22, 23. E $\frac{A}{2x-7} + \frac{B}{x+3} = \frac{A(x+3) + B(2x-7)}{(2x-7)(x+3)} = \frac{19x-8}{2x^2 - x - 21}$, so A = 9 and B = 5 and A + B = 14. C There are $\binom{8^2}{2} = \frac{8^2 (8^2 - 1)}{2}$ ways of choosing two arbitrary squares for the defective tiles. 24. 25. If the two defective tiles share and edge, then two cases must be considered. maxitute # * * * Ro **Case1**: One of the tiles was placed in any of the top 7 rows (8 x 7 ways), and the other was placed in the square below. to the the Be the to the the By to the the By Pho to the the of the to the We B the 小 按 读 化

multille m # "

Ro

Institute \$ 5

multille m # "

multinu m x 3

mating m # "

multinu m # 3

maximue ## # 3	masilitie # # 3 . masil	ute # # 3 . Mistilute # # 3	matilite # # 3	mytitute # # 3
R Institute Mar # B	Case 2 : One time was placed the square to its So the probability is $\frac{2}{2}$	placed in any of the left 7 c right. $\frac{2 \times 8 \times 7}{64 \times 63} = \frac{1}{18}$.	olumns (8 x 7 ways), and the other was
26. D 27. ¹¹¹ E	~ represents multiplicat solution. Those letters $3^{x} = 5 \Longrightarrow 3^{2x} = (3^{x})^{2} = 5$	tion. Since $1001 = 7 \cdot 11 \cdot 13$, are G, K and M. $5^2 = 25$, so $3^{2x+3} = 3^{2x} \cdot 3^3 =$, the $7^{\text{th}} 11^{\text{th}}$ and 13^{t} $25 \cdot 27 = 675$.	h letters are the
28. B	In one revolution, the or $5280 \cdot 12 = 63360$ inches decreased radius has r	briginal car tire covers $C = \pi$ es, the tire turns $\frac{63360 \frac{in}{mi}}{25\pi \frac{in}{rev}} \approx$ = 12.25, $d = 24.5^{\circ\circ}$ and $C = 2$	$\pi d = \pi (25in)$. Since 806.7245755 $\frac{rev}{mi}$. T 24.5 π ". So 63360 63360	the tire with
彩 29. B	$\frac{63360 \frac{in}{mi}}{24.5\pi \frac{in}{rev}} \approx 823.188342$ Since 5 + 2 = 7, and 3 - as 5a:2a and 3:4 can be	$24 \frac{rev}{mi}$. The percent increase + 4 = 7, each side length is a represented at 3a:4a. Then	is $\frac{\frac{03500}{25\pi} - \frac{03500}{24.5\pi}}{\frac{63360}{25\pi}}$ a multiple of 7, so 5	$\approx 2.0\%$. :2 can be represented
死 []]30. ¹¹¹¹ 在 C	area $\triangle AXC$: area $\triangle AB$ Consider cases where $x^2 - x - 1 = 1$, then x^2 -	$Y = \frac{1}{2}(2a) \cdot 7 : \frac{1}{2}(3a) \cdot 7 = 2:$ x+2=0 or $ x^2 - x - 1 = 1$ -x-2=0 \Rightarrow x=2 or x = -1	:3 . When $x = -2$, (1. If $x^2 - x - 1 = -1$	$(x^2 - x - 1)^{x+2} = 1$. If , then $x+2$ must be
発 []]31.111 新林 芬 []	even and $x^2 - x - 1 = -1$ If $x = 1$, then $x + 2$ is of Using a graphing calcu stronger fit than any oth	$-1 \Rightarrow x^2 - x = 0 \Rightarrow x = 0$ or $x = 0$ and $(-1)^3 \neq 1$. The solut lator, we find that the exponentiation of best fit.	x = 1. If $x = 0$, tions are $x = -2, x =$ nential regression gi	then $x+2$ is even. 2, x = -1, x = 0. ves $r = -0.988$, a
32. D 33. D	Substituting -3 for <i>x</i> given In the diagram, let M by Points P and Q trisect (Insert Figure)	wes $2(-3)^2 + (a-4)(-3) - 2a$ e the midpoint of \overline{AB} . \overline{AB} as shown.	$a = 0 \Rightarrow 30 - 5a = 0$ A 2x P	⇒ a = 6.
K Mistilute # # 13 f	Let $AB = 6x$. Then AB AP = 2x, PM = x. But OM = AM, so $OM = 3OP^2 = PM^2 + OM^2, 10$	M = 3x. Since 3x. Since $x^2 = x^2 + (3x)^2$ and	TO Y	10 Q H 3 K
R. 版本发	派 " " " " " " " " " " " " " " " " " " "	1. 频频等例 1. 频频等	W. With the state of the state	1. 新林 後外

$$x - \sqrt{10}$$
. Then the area of $aAOB$ is $\frac{1}{2}(AB)(OM) - \frac{1}{2}(6\sqrt{10})(3\sqrt{10}) - 90$.
34. E. $2f(x) = 2f\left(2\cdot \frac{x}{2}\right) = 2\left(\frac{2}{2+\frac{1}{3}}\right) = 2\left(\frac{4}{4+x}\right) = \frac{8}{4+x}$.
35. D Since *m* and *n* must both be positive, it follows that $n > 2$ and $m > 4$. Because $\frac{4}{m} + \frac{2}{n} = 1$
is equivalent to $(m-4)(n-2) = 8$, we need only find all ways of writing 8 as a product of
positive integers. The four ways $1 \cdot 8, 2 \cdot 4, 4 \cdot 2,$ and $8 \cdot 1,$ correspond to the four solutions
 $(m, n) = (5, 10), (6, 6), (8, 4), and (12, 3)$.
36. B For real, unequal roots $b^2 - 4ac > 0$. So $b^2 - 4 > 0 \Rightarrow b - 3, 4, 5, 6$. So the probability that
 $x^2 + kx + 1 = 0$ will have real, unequal roots is $\frac{4}{6}$ or $\frac{2}{3}$.
37. A Note that $C = A\log_{20}5 + B\log_{20}2 - \log_{200}5^4 + \log_{20}2^2 - \log_{200}(5^4 \cdot 2^2), so
 $200^2 - 5^4 \cdot 2^5$. Therefore, $5^4 \cdot 2^2 - 200^2 - (5^4 \cdot 2^2)^2 - 5^{22} \cdot 2^5$. By uniqueness of prime
factorization, $A = 2C$ and $B = 3C$. Letting $C = 1$, we get $A = 2, B = 3$, and $A + B + C = 6$.
The triplet $(A, B, C) = (2, 3, 1)$ is the only solution with no common factor greater than 1.
38. A Consider the figure as shown. The open box
has length $12 - 2x_1$, width $9 - 2x$ and height
 x . So the volume $V = x(12 - 2x)(9 - 2x)$
This approximate solution was found using a
graphing equivator. Once you bave has
has length $12 - 2x_1$, width $9 - 2x$ and height
 x . So the volume $V = x(12 - 2x)(9 - 2x)$
The maximuzed when $x = 1.697$ and $V \approx 81.872$.
This approximate solution was found using a
graphing equivator. The case you bave has
 $x = 2(600x, \text{ if } x < 20)$
 $y(x) = \frac{6(00x, \text{ if } x < 20)}{[600 - 15(x - 20)], \text{ if } x > 20]}$.
The maximum yield occurs when $x = 30, y = 135, 000$.
40. A One must compute each probability:
a. $p(\text{even } \& \text{ od } g) = \frac{3 \cdot 3 + 3 \cdot 3}{36} - \frac{1}{2}$$

N.

~ 按读像

~ 按读像

~ 按读像

~ 按读像

安装家

