		tions:	itule # 13 'S	Polyne	omials	新林塔梯	Withthe ## # '3 PR	Institute # # 'S P	R Institut
stitute	1. 2.	D. C. addition	2x + c = 6 The cost of al \$210, whi	$\Rightarrow 2x = 6 - c$ of the iPod is ch, at \$5 per h	$\Rightarrow x = 3 - \frac{c}{2}$ \$300 \cdot 1.07 = hour, will take	321, so ho 3210, so ho 5 per hour	e must save an = 42 hours.	Multime # # # 18 P	R Institut
stitute	海城	$\frac{2A-2-A}{A}$ E.	$\frac{-A-1+2A}{2^2-1}$ 0,1,5,14,3 $0^2+1^2,5=0$	$= \frac{3A-3}{A^2-1} = -3$ 30,55,,91.	The terms are	$\frac{3}{A+1}$ e the sum o	$\frac{2A}{2-1} =$ of squares: 0 = ² more than 55,	Multitute # # # P	C Institute
stitute	YAN Y	E. $f(x)$. E i B.	f(x) has x- is the only set	blution that satisfy $x^2 + 2xy$	tisfies these cr	iteria.	3) are factors of 289, so $2xy =$	Multille # # 'S P	R. Institute
Notitute.	物学	but 54 sa	es limit the p atisfies it.	oossibilities to	CK 1	, 39 fail the). The first two third property, $\Rightarrow k = \frac{4}{7}$	multille # # 'S P	R Institute
stitute	9. 10.	A. average E. the same	3+7+11 value of eac To not have e slope, so =	+ 15 + 19 + 22 h term is 201 a an intersectio $\frac{12}{c} = \frac{5}{2}$ and $c =$	$3 + \dots + 399 =$ and there are 1 n, two lines m $= \frac{-24}{5} = -4.8$	= 201(100) 00 terms. ust be parall	= 20,100 - the lel, and so have	Multitute # # # P	R Institut
stitute		at 0.5° p	per minute.	The difference	a o per minut	5° per minu	bur hand moves the. To traverse $\frac{7}{11}$ minutes	而如此此微林塔	R Institute
astitute.	物	1/3 PR	itute mat 's '	K masilule the t	the state	^{按法法保}	astitute ## # '\$ 1%	matine # # " P	C. Thistitute

Institute # # "

Institute \$5 TA 3

Institute # # **

Institute # # **

R.

N.

R

N.

R

R

R.

R.

R

小林学家

~ # # "多彩

~ 按张强伟

Institute \$5 \$5.3

Institute \$5 \$5 's

12. There are 4 orders in which this could occur and the probability of each order is $0.7^3(1-0.7)$. Multiplying the probability by the orders gives 0.4116.

minitule # # *

Institute # # *

Institute \$1 th 3

Multille # # # B

Mylittle ## # # B

withthe start to the

Withite # # # PR

面对机作新林塔梯

Institute the the 'S PR

训机物林荡院

林 林 法

the the B We

misitute # ** **

 $\sqrt{x} = \sqrt[3]{9}$, so $x^2 = 9^{4/3} = 9\sqrt[3]{9}$ 13. C.

Institute # # *

mutilite m # 3

Y.

Y.

Ro

Y.

Y.

Y.

R

2

to the the the Ph

- Let x be the distance outside of town when they meet, and let t be 14. A. the amount of time that Beth spent driving (in hours) then $x = 70(t - \frac{1}{4}) =$ 60t. $10t = \frac{70}{4}, t = \frac{7}{4}$. Substituting for t gives $60 \cdot \frac{7}{4} = 105$ mi.
- B. $y = 3x x^2$ intersects y = kx + 3, so $3x x^2 = kx + 3$ and $x^2 + (k-3)x + 3 = 0$. The roots are then $\frac{3-k\pm\sqrt{k^2-6k+9-12}}{2}$. In order for this to be a single repeated root, $k^2 6k 3 = 0$ and $k = \frac{6\pm\sqrt{36+12}}{2} = 3\pm\sqrt{12}$ 15. B.
- AMMA x XA = AAAAAAA. If A x A produces A as the last 16. E. digit, then A is one of 1,5,6. To produce an A in the 10's digit, if A = 1, (M+X)=11, while if A = 5 or 6 then (M+X) = 13. If A = 1, X = 8, M = 3, which doesn't work, while if X = 9, M = 2 which does. If A = 5 or 6, none of the pairs of X,M that produce X+M = 13 produce a large enough product.
- 17. D. Let t be the current work time, w her former wage, then 2wt =3w(t-12) and t = 36.

18. E.
$$((x-2) \star (x+4)) \star (x+7) = \frac{\frac{(x-2)+(x+4)}{2} + (x+7)}{2}$$

= $\frac{(x+1)+(x+7)}{2} = x+4$

to the the 'B We

19. E.
$$((x-c) \star x) \star (x+c) = x \star 2c, \frac{\frac{(x-c)+(x)}{2} + (x+c)}{2} = \frac{x+2c}{2}$$

 $x + \frac{c}{4} = \frac{x}{2} + c, x = \frac{3c}{2}$

If Fred breaks even at 12 cameras, then his purchase price per 20. A. camera is $\frac{\text{initial cost} + \text{cameras x transaction cost}}{(1007)}$ cameras x (100% + 50% markup)

 $(4284 + 12 \cdot 21)$ $=\frac{4536}{18}=252$. This gives 17 cameras. Subtracting the initial cost of \$4,284 and the transaction cost of $17 \cdot 21 from 150% of \$4,284 gives a profit of \$1,785.

1. B.
$$x + \frac{1}{x} = \frac{1}{p}, x^2 + 1 = \frac{x}{p}, x^2 - \frac{x}{p} + 1 = 0, x = \frac{\frac{1}{p} \pm \sqrt{\frac{1}{p^2} - 4}}{2} = \frac{1 \pm \sqrt{1 - 4p^2}}{2p}$$

2. B. $\frac{x^2 - 4}{x - 4}$ is 0 or undefined when $x = -2, 2, 4$. Testing points in each

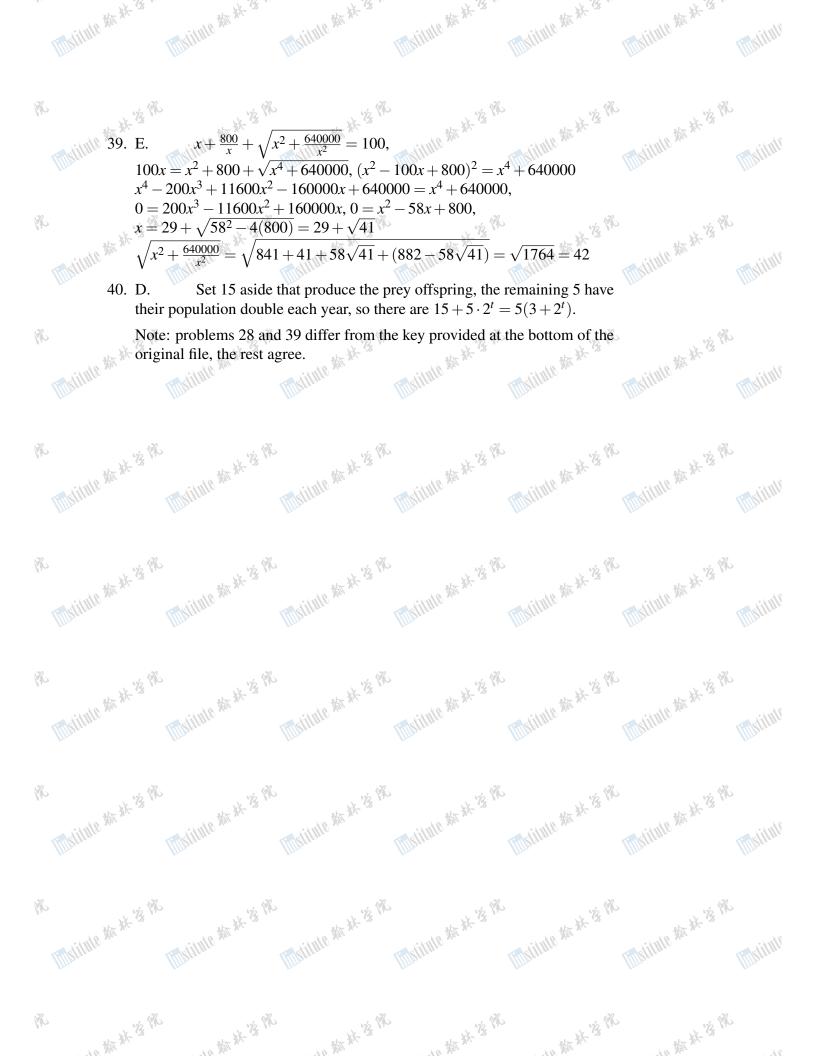
 $\frac{x^2-4}{x-4}$ is 0 or undefined when x = -2, 2, 4. Testing points in each 22. B. of the intervals (e.x. x = -3, 0, 3, 5) gives $\{x | (x \le -2) \cup (2 \le x < 4)\}$

to the We B

23. A.
$$\sqrt{x^2 + (2x)^2} = 5 \Rightarrow x = \sqrt{5}$$

24. A. The smallest triangular number above 100 is 105, where *n* = 14 and the smallest triangular number above 200 is 210, where *n* = 20, so there are 6 triangular numbers in this range.
25. C. On successive levels there are 66 + 55 + 45 + 36 + 28 + 21 + 15 + 10 + 63 + 11 = 286
26. E. This is calculated as $\binom{6}{2} - 28$
27. E. $\frac{\sqrt{5}}{\sqrt{x-\sqrt{5}}} + \frac{\sqrt{x}}{\sqrt{x+\sqrt{5}}} - \frac{5 + \sqrt{5x}}{x-5} - \frac{x+5}{x-5}$
28. C. $4^{2x+1} + 8 - 33(4^4), 4^{2(15)+1} + 8 - 33(4^{15}), 4^{2(-1)+1} + 8 - 33(4^{-1}), so 1.5 + -1 = .5$
29. D. The least common denominator of 10 and 28 is 140.
30. A. $(231 + 122) x21 = 1013 x21 = 1013 + 20320 = 21333$
31. D. The average is 65 $\cdot 2 + 82 \cdot 3 + 93 \cdot 2 + x \cdot 3 - 85 \cdot x = 96$
32. E. $M(n) - 6$ if $n - 16, 23, 32, 61$, additionally $M = (n) - 6$ if $M(n) - 16, 52$ so $n = 28, 44, 48, 82, 84$ or if $M(n) = 28, 48$ so $n = 47, 68, 74, 86$.
33. D. $\frac{1}{4} + \frac{1}{16} + \frac{1}{36} + \frac{1}{14} + \frac{1}{4} + \frac{1}{4} + \frac{1}{16} + \frac{1}{16} + \frac{1}{25} + \frac{1}{27} + \frac{1}{28} + \frac{1}{27} + \frac{1}{28} +$

Institute # ** *


Institute # ** *

Taritute # ** *

Institute # ** *

Institute # ** *

Institute # **

