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第三页此处开始为论文的主体部分…… 

 

论文题目 Why Statistical Discrimination Can Be Inefficient: 

An Agency-Based Theory 

作者 白小舟 Natalie Xiaozhou Bai 

论文摘要 Suppose an agent is tasked to make a diagnosis 

about a certain condition of the subject. If the agent cannot 

observe the subject’s condition directly, he will try to find and 

use information about the subject’s condition in order to 

make the right diagnosis. Suppose the subjects can be divided 

into groups, and the different groups have different likelihood 

of having the condition, then using group identity helps the 

agent better diagnose. This would result in discrimination in 

the sense that agents in different groups get different 

diagnosis even when they look otherwise the same. Such 

discrimination seems efficient as it makes use of all relevant 

information available to the agent. This paper shows that 

such discrimination can be socially inefficient if the agent 

does not bear the full social cost of misdiagnosis. The reason 

is that using group identity to help diagnosis may dull the 

incentives for the agent to find other information about the 

subject’s condition.  

关键词 Statistical Discrimination, Agency, Efficiency 
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论文正文： 

 

1. Introduction 

 

Racial discrimination is an important issue. For example, according to Quillian et 

al (2017), racial discrimination is still manifest in labor market. Based on the analysis 

of various field tests dating from 1990 to 2015, the average employment rate of white 

applicant is 36% higher than that of African American applicants, and 24% than that of 

Latino Americans, and this disparity experienced negligible fluctuation in the 25 years 

timespan. It has been shown that the result is valid even after the applicants’ educational 

degree, gender, and the occupations they were applying for are accounted for. Such 

discrimination is not limited to employment decisions, it is also prevalent in crime 

investigation, college enrollment, etc. It hinders different races from sharing equal 

opportunities, dividing the society and widening the gap between demographic groups. 

The recent George Floyd case again brought the issue to the spotlight. 

We can easily assume that racial discrimination is just an incidence driven by the 

innate hatred or dislike towards another race, but the constant repetition of the same 

tragedy tells us that simply attributing this event to emotional impulse is not a 

responsible way of viewing this matter.  

There is a large literature on statistical discrimination, following the seminal work 

by Phelps (1972), that seems to justify the existence of discrimination by showing that 

discrimination is the rational response of economic agents when they face imperfect 

information about the characteristics of people they interact with. Given some known 

average differences between groups, for the decision maker to use group members’ 

group identity as an influential factor in the evaluation of their characteristics is shown 

to be the result of optimization of the decision maker’s objective that does not directly 

depend on group identity of the group members. Often times, the literature shows such 

statistical discrimination is socially efficient. Given such results, it becomes more 

difficult to eradicate discrimination.  

This paper questions the result that statistical discrimination is efficient. It uses an 

agency based model to show that, under very reasonable conditions, statistical 

20
20

 S. -T
. Y

au
 H

igh
 Sch

oo
l S

cie
nc

e A
ward



5 

 

discrimination is inefficient. By assuming that the decision maker does not bear the full 

cost of making wrong inference about the characteristics of subjects they are charged 

to work with, the paper shows that allowing the decision maker to discriminate reduces 

the incentives for him to work hard to find accurate information about the 

characteristics of the subjects, resulting in socially inefficient outcome. The implication 

of this result is that, even for the purpose of pursuing efficiency, racial discrimination 

should not be allowed.  

The organization of the paper is as follows. It reviews the relevant literature first. 

There, it is shown that our theory is distinct from the existing theories in important ways, 

and it offers news insights for us to better analyze discrimination. The paper then 

presents a simple model with discrete variables to illustrate our main idea and results. 

This is followed by the presentation and analysis of a model with continuous variables. 

The paper then concludes by summarizing the key ingredient of the models.  

 

2. Literature review 

 

When we talk about racial discrimination, we generally refer to two branches of 

theories. The first is taste-based theory of discrimination, first defined by Gary Becker 

in 1957. Taste based discrimination is derived from the agent’s preference bias or 

dislike towards specific race or organizational culture, which results in negative effect 

on the welfare of minority groups. In contrast to taste-based theory of discrimination, 

there are statistical discrimination theories. In the model of statistical discrimination, 

economic agents have no ill intention against any targeted groups, however, they are 

utility or profit maximizers, which lead them to make decisions that may result in 

inequality. In this study, we will mainly be focusing on statistical discrimination. 

The study of statistical discrimination can again be divided into two branches 

based on the different premises researchers use to derive their model. One branch is led 

by Phelps (1972). Phelps starts off his analysis by assuming that there is an exogenous 

difference between groups of workers. The cause of this innate difference is irrelevant 

to the study, but the disparity between group average is crucial, as we will explain in 

the latter paragraph. Another branch is pioneered by Arrow, K. J. (1973). In contrast to 

Phelps’ study, Arrow derived his model by assuming that there is no exogenous 

difference between demographic groups. Instead, the difference is generated within the 

model, which is defined as endogenous difference. Comparing to Arrow’s model, 

Phelps’ model, which take the difference as given, is better related to our study, thus we 

will extend further on Phelps’ method.  

Assume there are two groups of workers whose group identities can be represented 

as j = {B, W}. The workers’ skill, which is equivalent to the value of their marginal 

product when employed, is represented as q. However, the employer cannot accurately 

evaluate the workers’ skill. The two messages the employer can receive are group 

identity and a noisy signal of productivity. The noisy signal, which we denote by θ, is 

positively related to q, but is disturbed by a zero mean error ε, which gives the equation 

θ=q+ε. In a perfectly competitive labor market, employers are assumed to share the 

same information about the applicants. This setting determines that the best strategy for 
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6 

 

the employers to determine the wage is to pay the workers the number equivalent to 

their marginal productivity: on the one hand, if the wage is lower than the marginal 

productivity of the worker, there can always be other companies swooping in and take 

away the labor; on the other hand, the value of the wage certainly won’t exceed the 

profit the worker is expected to generate for the company. In this scenario, given that 

the skill level of the workers cannot be determined with certainty, the employer will 

deduce the expected productivity of the workers using the noisy signal he perceives 

coupling with observable characteristics such as racial identity and the mean 

productivity of the race. In his study, Phelps shows that the expected productivity given 

θ equals to the weighted average of the signal and the unconditional group mean 𝜇𝑗:  

E(q|θ) =
𝜎𝑗

2

𝜎𝑗
2 + 𝜎𝜀𝑗

2 𝜃 +
𝜎𝜀𝑗

2

𝜎𝑗
2 + 𝜎𝜀𝑗

2 𝜇𝑗 

Phelps categorizes the implication of this model into two cases. In this first case, 

Phelps assumes that there a difference in the two demographic groups’ average 

productivity, but the groups signals are equally informative, which means that 

σεB=σεW=σε, and σB=σW=σ. Given this condition, the expected productivity of the 

worker is partially determined by the mean productivity 𝜇𝑗 of the group he belongs to, 

and the noisier the signal is, that is, the greater the value σεj is, the more discretion has 

been placed on 𝜇𝑗, and consequently inequality is yield---one employee is paid less 

than another employee even though the same signal is received of their productivity, 

because the mean productivity of the group he belongs to is lower than the other’s. In 

the second case, the premise is that the two groups have the same mean productivity, 

while the signals the employers receive are differently informative. Imagine if the 

employer belongs to the same group with one of the two employees, then we can 

reasonably project that he is more likely to understand and accurately evaluate the 

competence of the worker from the same group that he belongs to since they share the 

same culture. If the employee and one of the worker both belongs to the W group, then 

σεB>σεW, meaning that comparing with that of the W group, the mean productivity of B 

group (𝜇B) plays a more important role in determining the expected productivity of 

the worker from the group, and undermines the effect of the worker’s personal 

performance. Consider that the average productivity of the two groups are the same, 

people may think that it is a relatively fair model. However, the successors of Phelps’ 

model used more comprehensive methodologies to show that one group can still receive 

more mistreatment than another under this setting.  

In 1977, researcher Aigner, D. and G. Cain published their article “Statistical 

Theories of Discrimination in the Labor Market” and improved the understanding of 

statistical discrimination. Their innovation is to take the employer’s risk averseness into 

the consideration. People generally prefer certainty over uncertainty, and are willing 

pay less for the product or service that requires them to bear more risk in order to 

compensate for their loss of utility. This is the same mechanism that motivates people 

to pay for insurance: uninsured individuals have lower levels of utility than those who 

spend money on their insurances, as they are required to bear the risk themselves, 

instead of having the insurance company to share their risk. In the scenario provided in 
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7 

 

the last paragraph, although workers from group B are on average not disadvantaged, 

their signal is less informative to the employer from group W, which means that the 

employer perceives uncertainty. As a result, the employee is willing to pay less to 

workers from group B as an insurance of avoiding unworthy investments, and racial 

pay gap thereby emerges.  

Last but not least, there is the study carried by Lundberg, S. and R. Starts in 1983. 

In this study, the two researchers introduce the concept of human capital investment to 

the model established by Phelps. Human capital investment is an effective way of 

elevating a worker’s marginal output, however, it is costly. Once again, based on the 

second case proposed by Phelps, the true marginal product of the worker from group B 

plays a less important role in determining the expected productivity than that of worker 

from group W. Consequently, with the same human capital investment, the worker from 

group B will receive less payback than worker W, thus have less incentive to invest his 

time and energy into improving his skill. This original setting will logistically result in 

a gap between the working ability of the two groups and continuously increase the gap 

as time went on, producing an endogenous difference that roots from the exogenous 

difference of informativeness.  

Among the studies mentioned above, only the second case proposed by Phelps 

does not involve inequality, and all other cases results in greater disadvantage for one 

group over another. However, most of them concern only the damage of discrimination 

to a specific group instead of the total social welfare, and they denounce statistical 

discrimination by pointing out that it causes inequality and is ethically wrong. However, 

the measurement for morality is abstract, and some advocators of statistical 

discrimination may argue that sacrificing some extent of moral righteousness to achieve 

higher efficiency is justifiable. Thus immorality may not be a compelling reasoning for 

everyone. The conception of Lundberg and Starts’ study took the social welfare into 

consideration, as the reduction in human capital investment will eventually undermines 

the productivity of the society, but it’s still different from our case. Lundberg and Starts 

uses productivity as a measurement of social welfare, and they assume that all 

information obtainable to the agency is imperfect. However, our assumption is that the 

accuracy of the information can be improved through much dedication of the agent, and 

the unavoidable error caused by imperfect information has social implications itself. 

This implication could be emotional dissatisfaction, racial conflict, waste of talent and 

loss of security, etc. In total they can be summarized as a loss of social welfare, in other 

words, the social cost of misjudgment. In order to demonstrate this social cost more 

intuitively, we use drug test instead of the conventional employment problem as the 

example of our model. The implication on social welfare of misdiagnosing a drug addict 

is evident to most people.  

In our study, we start off by assuming that there is an officer who does not observe 

with certainty whether the two groups of men he is dealing with have been on drug or 

not. To find the drug addicts, the officer can run a test. The test can be an informative 

indicator of the suspects’ guiltiness, however, to conduct the informative test requires 

high dedication. This dedication can be seen as the officer’s effort, and we assume that 

the all people has a natural inclination of preferring leisure over effort. There could be 
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special cases whereas the agent in question is a workaholic and does not see the 

devotion of effort as a reduction in utility, but special cases usually do not affect the 

rationality of a general conclusion, thus this assumption is still widely employed in 

economic models. If the principal hiring the officer has a tolerance for discrimination, 

it means that the officer has the freedom to choose whether to test one group or not. 

Our hypothesis is that under the condition of allowing discrimination, there is a moral 

hazard that the agency would not choose to maximize the accuracy of his diagnosis, 

resulting in a higher social cost.  

 

3. A Simple Model 

 

Since this is an agency based theory, we start off by assuming that the principal 

hires an agent to diagnose subjects for a certain condition. One example of the condition 

is drug addiction. We denote the condition by 𝑎, 𝑎 = 0 𝑜𝑟 1, where 𝑎 = 1 means 

the subject has the condition. We assume that there is a social cost of C associated with 

misdiagnosis. There are two types of misdiagnosis. Type I error is false positive, which 

means the agent diagnoses the subject as having the condition when the subject actually 

does not have the condition. Type II error is false negative, which means the agent 

diagnoses the subject as not having the condition when the subject actually has the 

condition. For the sake of simplicity, we assume that the cost of type I and type II errors 

are the same. Since we are only demonstrating the possibility of a certain theoretical 

result, this simplifying condition should be acceptable as long as it is not the only the 

key to a knife-edge result.  

We further assume that the agent only bears part of the social cost of misdiagnosis, 

namely λC, where λ<1 is a positive number.  

Assume that the agent can exert effort to test the subject and find out exactly what 

 𝑎 is. To do the test, it costs the agent E. The agent can also shirk and not do the test. 

Then he gets no useful information. It is reasonable to assume that the principal cannot 

verify whether the agent has performed the test, if the agent can issue an arbitrary test 

result without any cost.  

The subjects can be divided into two groups, and the probability of having the 

condition is different across the groups. If there’s no such difference in reality, then 

there won’t be such a thing as statistical discrimination. One example of group identity 

is ethnicity or racial identity. We denote group identity by 𝑟, 𝑟 = 0 or 1. We assume 

the probability of 𝑟 = 1 is 

P(𝑟 = 1) = ρ, 

and the conditional probability of 𝑎 = 1 given r is  

P(𝑎 = 1|𝑟) = 𝑝𝑟 ,  

where 𝑟 = 0 𝑜𝑟 1. 

Note that the chance of having drug addiction is usually not very high, and is 

different across the groups, so we can reasonably assume that 

1

2
> 𝑝1 > 𝑝0 > 0 

Given these specifications, we have  
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P(𝑎 = 1, r = 1) = 𝜌𝑝1,  

P(𝑎 = 1, r = 0) = (1 − 𝜌)𝑝0, 

P(𝑎 = 0, r = 1) = 𝜌(1 − 𝑝1),  

P(𝑎 = 0, r = 0) = (1 − 𝜌)(1 − 𝑝0). 

 If no test is done, the diagnosis can only be based on the group identify. In this case, 

it is optimal to diagnose the subject as not having the condition because 
1

2
> 𝑝1 > 𝑝0 >

0. Then the expected social cost of misdiagnosis is C𝑝𝑖 depending on the group identity. 

We assume  

 

Assumption 1: C𝑝𝑖 > 𝐸 for any i.  

 

In words, it is socially optimal to test both groups of subjects.  

 Now we consider the agent’s decision making. We compare two cases, one in 

which no discrimination between the two groups is allowed; either both groups are 

subject to the test, or none of the groups is.  

 

Case 1: No discrimination is allowed between the groups.  

 

If both groups are subject to the test, there is zero error and the agent’s expected 

utility is  

𝑉1 = −𝐸. 

If no one is subject to the test, we don’t have any information except the group identity. 

Since no discrimination is allowed, even the group identity cannot be used for diagnosis. 

In this case, it is optimal to diagnose the agent of not having the condition, and then 

misdiagnosis happens when the agent has the condition and false negative cases are 

reported. Therefore, the agent’s expected utility is 

𝑉2 = 𝑃(𝑟 = 1)𝑃(𝑎 = 1|𝑟 = 1)(−𝜆𝐶) + 𝑃(𝑟 = 0)𝑃(𝑎 = 1|𝑟 = 0)(−𝜆𝐶) 

= −λC[ρ𝑝1 + (1 − 𝜌)𝑝0]. 

We assume 

 

Assumption 2: 𝐸 < 𝜆𝐶[𝜌𝑝1 + (1 − 𝜌)𝑝0].  

The social cost that the agency has to bear for misdiagnosing both groups is greater than 

effort the agency has to make to conduct the perfect diagnosis.  

 

This assumption is true if C is sufficiently large relative to E. Under this assumption, 

we have 

𝑉1 > 𝑉2, 

and it is optimal of the agent to test both groups. We summarize this result in the 

following proposition. 

 

Proposition 1: If no discrimination is allowed between the groups, it is optimal of the 

agent to exert effort test both groups. 
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Case 2: Discrimination is allowed between the groups.  

 

Now, the agent can choose to test one group and not to test the other group. 

Consider the case where the agent only tests r=1, not r=0. For group r=0, we don’t have 

any information except the group identity, it is optimal to diagnose the agent of not 

having the condition, and then misdiagnosis happens when the agent has the condition. 

Therefore, the agent’s expected utility is  

𝑉3 = 𝑃(𝑟 = 1)(−𝐸) + 𝑃(𝑟 = 0)𝑃(𝑎 = 1|𝑟 = 0)(−𝜆𝐶) 

= −ρE − (1 − ρ)𝑝0λ𝐶. 

We assume 

 

Assumption 3: 𝐸 > 𝜆𝑝0𝐶. 

In words, the effort that the agent has to exert to conduct the perfect testing is greater 

than the partial social cost that the agent has to bear for falsely diagnosing a suspect 

from group 0 as not having the condition. 

 

Before going further, we need to check whether Assumption 3 and Assumption 2 are 

contradictory. If  

𝜆𝑝0𝐶 < 𝜆𝐶[𝜌𝑝1 + (1 − 𝜌)𝑝0], 

then there exists in interval of E that satisfy both assumptions and the assumptions are 

not contradictory. By canceling out common factors and combining like terms, we get 

the result that 𝜆𝐶𝑝0 < 𝜆𝐶[𝜌𝑝1 + (1 − 𝜌)𝑝0] is equivalent to 𝑝0 < 𝑝1, which is our 

original assumption. Therefore, Assumptions 2 and 3 are not contradictory. Based on 

reality, we can reasonably assume that the agent only bears a small fraction of the social 

cost of his mistake, especially when the principle can hardly tell if the agent is 

completing his job, thus the value of 𝜆 can be so small that Assumptions 1 (C𝑝𝑖 > 𝐸) 

and 3 （𝐸 > 𝜆𝑝0𝐶）are not contradictory either. With Assumption 3, we can show that  

 

Proposition 2: If discrimination is allowed between the two groups, it is optimal for the 

agent to discriminate.  

 

Since we have already shown that  

𝑉1 > 𝑉2 , 

we only need to show  

𝑉3 > 𝑉1    

to prove Proposition 2.  

𝑉3 > 𝑉1 can be rewritten as  

−ρE − (1 − ρ)𝑝0λ𝐶 > −𝐸, 

which can be reduced to 𝐸 > 𝜆𝑝0𝐶, that is, Assumption 3. Therefore, with the previous 

assumption, the agent would prefer to discriminate. This inclination of discrimination, 

as we would address on afterwards, will result in a loss of social welfare.   

 When the agent discriminates, he can also test group r=0 but not group r=1. If so, 

the expected utility of the agent is  
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𝑉4 = −ρ𝑝1λ𝐶 − (1 − ρ)E. 

If 𝑉4 ≥ 𝑉1, then  

−ρ𝑝1λ𝐶 − (1 − ρ)E ≥ −𝐸, 

which can be reduced to E ≥ 𝑝1λ𝐶.  By Assumption 2, 𝐸 < 𝜆𝐶[𝜌𝑝1 + (1 − 𝜌)𝑝0] . 

Then,  

𝜆𝐶[𝜌𝑝1 + (1 − 𝜌)𝑝0] > 𝑝1λ𝐶, 

which is equivalent to 𝑝𝑜 > 𝑝1, contradicting our earlier assumption. Therefore, we 

have 

𝑉4 < 𝑉1 < 𝑉3. 

This implies that, if the agent discriminates, he will choose testing group r=1 only over 

testing group r=0 only.  

 The next question is whether we should allow discrimination if we want to 

maximize social welfare. When discrimination is not allowed, the agent tests both 

groups, and social welfare is  

𝑊1 = −𝐸. 

When discrimination is allowed, the agent tests r=1 only, and social welfare is  

𝑊3 = 𝑃(𝑟 = 1)(−𝐸) + 𝑃(𝑟 = 0)(−𝑝0𝐶) 

= −ρE − (1 − ρ)𝑝0𝐶. 

By Assumption 1, 𝑝0𝐶 > 𝐸, and therefore  

𝑊3 < 𝑊1. 

We then have 

 

Proposition 3: In order to maximize social welfare, discrimination should not be 

allowed.  

 

4. A Continuous Model 

 

In the above simple model, we formally demonstrate that, under certain conditions, 

the social welfare gets improved when no discrimination is allowed. This result is based 

on the specifications that: (1) the condition 𝑎 and the diagnosis choice are both binary; 

and (2) agent receives precise information about the condition 𝑎 whenever a costly 

test is done. In reality, it is hard to believe that the two assumptions always hold. The 

condition that is to be diagnosed can be very complex, and even a scientific test may 

not completely reveal the exact result.  

As a response to these concerns, we now consider a variant version of the model, 

where both the condition and the diagnostic choice can take a continuum of values, and 

the condition 𝑎 follows a normal distribution with mean 𝑎0 and variance 𝜎0
2. 

We use 𝑎̂ to denote the diagnostic choice. The social welfare, i.e., the principal’s 

payoff, is assumed to be 

W(𝑎̂; 𝑎) = −(𝑎̂ − 𝑎)2 ∙ 𝐶. 

Similar as in the binary-value model, we assume that the agent only bears part of the 

social cost of misdiagnosis, namely λ∙ (𝑎̂ − 𝑎)2 ∙ 𝐶, where λ<1 is a positive number. 

One can easily check that the assumption of the social welfare function is consistent 
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with the binary-value case. Now assume the group identify r is correlated with the 

condition 𝑎 in the following way 

r = 𝑎 + ε1, 

where ε1 is a normal distribution with mean 0 and variance 𝜎1
2 and is independent of 

condition 𝑎 . The sum of two independent normal distributions is also a normal 

distribution. So r  is a normal distribution. By the properties of normal distribution 

(DeGroot, 1970), we can calculate the expectation of 𝑎  conditional on the group 

identify r 

E(𝑎|r) =
𝜎1

2𝑎0 + 𝜎0
2r

𝜎1
2 + 𝜎0

2 . 

As r increases, in the expectation above, 𝑎 is more likely to have a higher value. This 

is consistent with the assumption in the discrete case that 

P(𝑎 = 1|𝑟 = 1) > P(𝑎 = 1|𝑟 = 0). 

    Consider the additional signal s that the agent can receive. The signal is assumed 

to be generated according to the following process. 

s = 𝑎 + ε2, 

where ε2 is a normal distribution with mean 0 and variance 𝜎2
2 and is independent of 

condition 𝑎 and ε1. The sum of two independent normal distributions is also a normal 

distribution. So s is a normal distribution. Agent can exert effort 𝑒 to reduce 𝜎2
2, i.e., 

the noise in the signal. Specifically, we assume 

𝜎2
2 =

1

𝑒
. 

When 𝑒 = +∞, the signal is perfectly informative about the condition 𝑎; however, 

when no effort is made (𝑒 = 0), the signal s becomes not informative at all. Similar as 

in the discrete model, the effect is costly for the agent. We assume that the cost is 𝜙(𝑒), 

where 𝜙(𝑒) is a continuously differentiable, strictly increasing and convex function 

with 𝜙′(0) = 0. Different from the discrete model, even after the agent exerts effort, 

he only gets a noisy signal about the condition 𝑎. 

Similar as in the discrete model, we consider two cases, the one where no 

discrimination is allowed, and the one where discrimination is allowed. In the former 

case, the agent’s diagnostic choice can only be based on the signal s, where its 

informativeness depends on his effort 𝑒. In the latter case, the agent’s diagnostic choice 

can be based on both the signal s and the group identity, where informativeness of the 

signal also depends on his effort 𝑒. 

In either case, after the agent makes an effort 𝑒, he needs to maximize his own 

expected payoff given a certain set of information I. In general, we have the following 

optimization problem to characterize the agent’s diagnostic choice 𝑎̂. 

𝑀𝑖𝑛
𝑎̂

  λ𝐶 ∙ 𝐸[(𝑎̂ − 𝑎)
2
|𝐼] 

By the first order condition, we know that the optimal diagnostic choice is 𝑎̂(𝐼) =

𝐸(𝑎|𝐼). The social welfare loss is then proportional to the conditional variance of 𝑎, 

i.e., 𝐶 ∙ 𝑉𝑎𝑟(𝑎|𝐼). 

In the case when no discrimination is allowed, the social welfare is −𝐶 ∙ 𝑉𝑎𝑟(𝑎|𝑠). 
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In the case when discrimination is allowed, the social welfare is −𝐶 ∙ 𝑉𝑎𝑟(𝑎|𝑠, 𝑟). By 

the properties of normal distribution (DeGroot, 1970), we have 

𝑉𝑎𝑟(𝑎|𝑠) =
𝜎0

2 ∙ 𝜎2
2

𝜎0
2 + 𝜎2

2, 

𝑉𝑎𝑟(𝑎|𝑠, 𝑟) =
𝜎0

2 ∙ 𝜎1
2 ∙ 𝜎2

2

𝜎0
2 ∙ 𝜎2

2 + 𝜎1
2 ∙ 𝜎0

2 + 𝜎2
2 ∙ 𝜎1

2. 

After rearrangement, we get 

𝑉𝑎𝑟(𝑎|𝑠) =
1

𝑒 +
1

𝜎0
2

, 

𝑉𝑎𝑟(𝑎|𝑠, 𝑟) =
1

𝑒 +
1

𝜎1
2 +

1
𝜎0

2

. 

For convenience, we define a new function 

𝑓(𝑥) = −𝐶
1

𝑥 +
1

𝜎0
2

. 

This is exactly the social welfare as a function of the agent’s effort. We know that the 

agent’s optimal choice of effort 𝑒 when no discrimination is allowed is captured by 

𝑒𝑁
∗ = 𝑎𝑟𝑔𝑀𝑎𝑥

𝑒
   λ𝑓(𝑒) − 𝜙(𝑒). 

When discrimination is allowed, the agent gets additional piece of information before 

he makes the choice of information acquisition. His net expected gain is therefore 

λ𝑓 (𝑒 +
1

𝜎1
2) − 𝜙(𝑒), where 

1

𝜎1
2 reflects the informativeness of the group identity. Thus 

agent’s optimal choice of effort when the discrimination is allowed is captured by 

 

𝑒𝐷
∗ = 𝑎𝑟𝑔𝑀𝑎𝑥

𝑒
   λ𝑓 (𝑒 +

1

𝜎1
2) − 𝜙(𝑒). 

Similarly, the best effort that maximizes the social welfare is pinned down by 

𝑒𝐵
∗ = 𝑎𝑟𝑔𝑀𝑎𝑥

𝑒
   𝑓 (𝑒 +

1

𝜎1
2) − 𝜙(𝑒). 

Notice that 𝑓(𝑥)  is strictly increasing and strictly concave with 𝑓′(0) >

0, 𝑓′(+∞) = 0.  

 

Proposition 4: When discrimination is not allowed, the agent exerts a higher effort to 

conduct the test than in the case when discrimination is allowed, i.e., 𝑒𝐷
∗ < 𝑒𝑁

∗ .  

 

The result of the proposition is very intuitive. As one gets more endowments in the 

production, his free riding incentive arises so that he will have a less incentive to 

produce. Notice that both 𝑒𝐷
∗  and 𝑒𝑁

∗  can be pinned down by the first order conditions, 

namely we have  
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λ𝑓′(𝑒𝑁
∗ )= 𝜙′(𝑒𝑁

∗ ), 

λ𝑓′(𝑒𝐷
∗ +

1

𝜎1
2)= 𝜙′(𝑒𝐷

∗ ). 

We can prove Proposition 4 by contradiction. Suppose 𝑒𝐷
∗ ≥ 𝑒𝑁

∗  . Because 𝑓(∙)  is 

strictly concave, we have λ𝑓′(𝑒𝐷
∗ +

1

𝜎1
2 )< λ𝑓′(𝑒𝐷

∗ ) ≤  λ𝑓′(𝑒𝑁
∗  )= 𝜙′(𝑒𝑁

∗ ) . Since 𝜙(𝑒) 

is strictly convex, we have 𝜙′(𝑒𝑁
∗ ) ≤ 𝜙′(𝑒𝐷

∗ ) . So we have λ𝑓′(𝑒𝐷
∗ +

1

𝜎1
2 )<  𝜙′(𝑒𝐷

∗ ) , 

which is a contradiction. As a result, we must have 𝑒𝐷
∗ < 𝑒𝑁

∗ .  

 

The following proposition shows when we can achieve the socially efficient outcome. 

 

Proposition 5: When λ =
𝜙′(𝑒𝐵

∗ )

𝑓′(𝑒𝐵
∗ )

，  the effort chosen by the agent when no 

discrimination is allowed is the same as the socially efficient effort; that is, 𝑒𝑁
∗  = 𝑒𝐵

∗   

 

First we need to check that 
𝜙′(𝑒𝐵

∗ )

𝑓′(𝑒𝐵
∗ )

<1. Notice that socially efficient effort 𝑒𝐵
∗  is captured 

by the first order condition 

𝑓′(𝑒𝐵
∗  +

1

𝜎1
2)= 𝜙′(𝑒𝐵

∗  ). 

Because 𝑓(∙) is strictly concave, we have 𝑓′(𝑒𝐵
∗  +

1

𝜎1
2)< 𝑓′(𝑒𝐵

∗  ) so that  
𝜙′(𝑒𝐵

∗ )

𝑓′(𝑒𝐵
∗ )

<1. 

Notice that λ𝑓′(𝑒𝑁
∗ )= 𝜙′(𝑒𝑁

∗ ). By the strict concavity of 𝑓(∙), the convexity of 𝜙(∙), 

and the definition of λ , we conclude that 𝑒𝑁
∗   and 𝑒𝐵

∗   must be the same. Thus, we 

prove the proposition. 

 

The following proposition shows that when the agent is less responsible for the social 

cost than is assumed in Proposition 5, not allowing discrimination can always improve 

social welfare. 

 

Proposition 6: When λ is smaller than but close to 
𝜙′(𝑒𝐵

∗ )

𝑓′(𝑒𝐵
∗ )

, and 𝜎1
2 is sufficiently large, 

the outcome when no discrimination is allowed is more efficient than that when 

discrimination is allowed. 

 

Notice that the social welfare as a function of 𝑒 is strictly concave. Also notice that 

𝑒𝐷
∗ < 𝑒𝑁

∗ . We first show 𝑒𝐵
∗ >𝑒𝑁

∗  when λ <
𝜙′(𝑒𝐵

∗ )

𝑓′(𝑒𝐵
∗ )

.  This result is obvious if we can 

show that 
𝑑𝑒𝑁

∗

𝑑λ
>0. By taking the derivative with respect to λ in the first order condition 
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of 𝑒𝑁
∗ , we get 

λ𝑓′′(𝑒𝑁
∗ )

𝑑𝑒𝑁
∗

𝑑λ
+ 𝑓′(𝑒𝑁

∗ ) =
𝑑𝑒𝑁

∗

𝑑λ
𝜙′′(𝑒𝑁

∗ ). 

After rearrangement, we have 
𝑑𝑒𝑁

∗

𝑑λ
=

𝑓′(𝑒𝑁
∗ )

𝜙′′(𝑒𝑁
∗ )−𝑓′′(𝑒𝑁

∗ )
 >0. The social welfare when no 

discrimination is allowed is 𝑓(𝑒𝑁
∗ ) − 𝜙(𝑒𝑁

∗ )  and the social welfare when 

discrimination is allowed is 𝑓 (𝑒𝐷
∗ +

1

𝜎1
2) − 𝜙(𝑒𝐷

∗ ). From what we showed earlier,  

 

𝑓 (𝑒𝑁
∗ +

1

𝜎1
2) − 𝜙(𝑒𝑁

∗ ) > 𝑓 (𝑒𝐷
∗ +

1

𝜎1
2) − 𝜙(𝑒𝐷

∗ ), 

and the difference between them is not going to zero as 𝜎1
2 goes to infinity and λ is 

smaller than but close to 
𝜙′(𝑒𝐵

∗ )

𝑓′(𝑒𝐵
∗ )

. As 𝜎1
2 goes to infinity, 𝑓(𝑒𝑁

∗ ) − 𝜙(𝑒𝑁
∗ ) is very close 

to 𝑓 (𝑒𝑁
∗ +

1

𝜎1
2) − 𝜙(𝑒𝑁

∗ ) . Therefore, 𝑓(𝑒𝑁
∗ ) − 𝜙(𝑒𝑁

∗ ) >  𝑓 (𝑒𝐷
∗ +

1

𝜎1
2) − 𝜙(𝑒𝐷

∗ ).  We 

have thus proven the proposition.  

 

 

5. Conclusions 

 

In sum, this paper illustrates a new insight about the inefficiency of discrimination. 

The key assumption is the agent only bears part of the social cost of misdiagnosis. The 

socially optimal effort is for the agent to test everybody. If the agent is not allowed to 

discriminate, he is forced to choose between testing everybody or testing nobody. 

Facing this stark choice, it is optimal for him to test everybody even though he only 

bears part of the social cost of misdiagnosis. If the agent is allowed to discriminate, he 

will choose to test the group with higher probability of having the condition and not to 

test the other group, mainly because he only bears part of the social cost of misdiagnosis. 

Therefore, not allowing the agent to discriminate induces higher effort for both groups 

of subjects, resulting in higher social welfare than in the case in which discrimination 

is allowed.  

Our result is based on a few assumptions. The first is that the social cost of reporting 

false negativity of any group of drug addicts exceeds the cost of the individual officer’s 

effort; the second and the last state that the partial social cost that the agent has to bear 

for misdiagnosing one group is less than the effort the agency has to make to perform 

the right test, while the partial social cost of misdiagnosing both group is greater. Each 

of these assumptions is reasonable based on common sense, and together they lead us 

to the conclusion.  

In the continuous case, given the agent’s dislike for effort, the effort choice that is 

optimal to him is lower than the level that is socially optimal. By forbidding the agent 

from using group identity to make inference, we reduce the amount of information the 
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agent starts with and therefore increase the marginal effect of gaining information from 

his effort, giving him more incentives to make an effort and partially offsetting the 

disincentive resulting from his not bearing all the social cost of misdiagnosis. Under 

certain conditions, the incentive effect of not allowing discrimination is so large that it 

enhances social efficiency.  
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