## Johns Hopkins Math Toúrnament 2021

## Individual Round: Geometry

April 3rd, 2021

## Instructions

- Remember you must be proctored while taking the exam.
- This test contains 10 questions to be solved individually in 60 minutes.
- All answers will be integers.
- Problems are weighted relative to their difficulty, determined by the number of students who solve each problem.
- No outside help is allowed. This includes people, the internet, translators, books, notes, calculators, or any other computational aid. Similarly, graph paper, rulers, protractors, compasses, and other drawing aids are not permitted.
- If you believe the test contains an error, immediately tell your proctor.
- Good luck!

1. In the diagram below, a triangular array of three congruent squares is configured such that the top row has one square and the bottom row has two squares. The top square lies on the two squares immediately below it. Suppose that the area of the triangle whose vertices are the centers of the three squares is 100 . Find the area of one of the squares.

2. A triangle is nondegenerate if its three vertices are not collinear. A particular nondegenerate triangle $\triangle J H U$ has side lengths $x, y$, and $z$, and its angle measures, in degrees, are all integers. If there exists a nondegenerate triangle with side lengths $x^{2}, y^{2}$, and $z^{2}$, then what is the largest possible angle measure in the original triangle $\triangle J H U$, in degrees?
3. Let $A B C D E F$ be a convex hexagon such that $A B=C D=E F=20, B C=D E=F A=21$, and $\angle A=\angle C=\angle E=90^{\circ}$. The area of $A B C D E F$ can then be expressed in the form $a+\frac{b \sqrt{c}}{d}$, where $a, b, c$, and $d$ are positive integers, $b$ and $d$ are relatively prime, and $c$ is not divisible by the square of any prime. Find $a+b+c+d$.
4. Triangle $A B C$ has side lengths $A C=3, B C=4$, and $A B=5$. Let $R$ be a point on the incircle $\omega$ of $\triangle A B C$. The altitude from $C$ to $\overline{A B}$ intersects $\omega$ at points $P$ and $Q$. Then, the greatest possible area of $\triangle P Q R$ is $\frac{m \sqrt{n}}{p}$, where $m$ and $p$ are relatively prime positive integers, and $n$ is a positive integer not divisible by the square of any prime. Find $m+n+p$.
5. Let $\mathcal{S}$ be the set of points $(x, y)$ in the Cartesian coordinate plane such that $x y>0$ and $x^{2}+y^{2}+2 x+4 y \leq$ 2021. The total area of $\mathcal{S}$ can be expressed in simplest form as $a \pi+b$, where $a$ and $b$ are integers. Compute $a+b$.
6. $J H M T$ is a convex quadrilateral with perimeter 68 and satisfies $\angle H J T=120^{\circ}, H M=20$, and $J H+J T=J M>H M$. Furthermore, ray $\overrightarrow{J M}$ bisects $\angle H J T$. Compute the length of $\overline{J M}$.
7. Triangle $\triangle J H T$ has side lengths $J H=14, H T=10$, and $T J=16$. Points $I$ and $U$ lie on $\overline{J H}$ and $\overline{J T}$, respectively, so that $H I=T U=1$. Let $M$ and $N$ be the midpoints of $\overline{H T}$ and $\overline{I U}$, respectively. Line $\overleftrightarrow{M N}$ intersects another side of $\triangle J H T$ at a point $P$ other than $M$. Compute $M P^{2}$.
8. Triangle $\triangle A B C$, with $B C=48$, is inscribed in a circle $\Omega$ of radius $49 \sqrt{3}$. There is a unique circle $\omega$ that is tangent to $\overline{A B}$ and $\overline{A C}$ and internally tangent to $\Omega$. Let $D, E$, and $F$ be the points at which $\omega$ is tangent to $\Omega, \overline{A B}$, and $\overrightarrow{A C}$, respectively. The rays $\overrightarrow{D E}$ and $\overrightarrow{D F}$ intersect $\Omega$ at points $X$ and $Y$, respectively, such that $X \neq D$ and $Y \neq D$. Compute the length of $\overline{X Y}$.
9. Right triangle $\triangle A B C$ has a right angle at $A$. Points $D$ and $E$ respectively lie on $\overline{A C}$ and $\overline{B C}$ so that $\angle B D A \cong \angle C D E$. If the lengths $D E, D A, D C$, and $D B$ in this order form an arithmetic sequence of distinct positive integers, then the set of all possible areas of $\triangle A B C$ is a subset of the positive integers. Compute the smallest element in this set that is greater than 1000.
10. Parallelogram $J H M T$ satisfies $J H=11$ and $H M=6$, and point $P$ lies on $\overline{M T}$ such that $J P$ is an altitude of $J H M T$. The circumcircles of $\triangle H M P$ and $\triangle J M T$ intersect at the point $Q \neq M$. Let $A$ be the point lying on $\overline{J H}$ and the circumcircle of $\triangle J M T$. If $M Q=10$, then the perimeter of $\triangle J A M$ can be expressed in the form $\sqrt{a}+\frac{b}{c}$, where $a, b$, and $c$ are positive integers, $a$ is not divisible by the square of any prime, and $b$ and $c$ are relatively prime. Find $a+b+c$.

## Geometry Solutions

1. The length of the horizontal base and the vertical height of the triangle both equal the side length of each square. Therefore, if we let this side length be $s$, then the area of the triangle is $\frac{1}{2} s^{2}=100$. The area of each square is therefore $s^{2}=200$.
2. The triangle inequality states that three line segments of positive lengths $x, y$, and $z$ form a nondegenerate triangle if and only if $x+y>z, y+z>x$, and $z+x>y$. Therefore, in order for a nondegenerate triangle to have side lengths $x^{2}, y^{2}$, and $z^{2}$, we need $x^{2}+y^{2}>z^{2}, y^{2}+z^{2}>x^{2}$, and $z^{2}+x^{2}>y^{2}$. By the Pythagorean Theorem, these three inequalities tell us that no one side (of length $x, y$, or $z$ ) is long enough to be a hypotenuse of a right triangle with the other two sides as legs. This means that the nondegenerate triangle with side lengths $x, y$, and $z$ must be acute. Conversely, knowing that the $x-y-z$ triangle is acute is enough to guarantee that the $x^{2}-y^{2}-z^{2}$ triangle is nondegenerate. Hence, the largest possible integer angle measure of the original acute triangle is 89 degrees.

## 3. Solution:

Observe that upon drawing $\overline{B D}, \overline{D F}$, and $\overline{F B}, A B C D E F$ is simply an equilateral triangle with sides of length $\sqrt{20^{2}+21^{2}}=29$ along with three right triangles with legs of length 20 and 21 . Therefore, the area of $A B C D E F$ is

$$
\frac{\sqrt{3}}{4}\left(29^{2}\right)+\frac{3}{2}(20)(21)=630+\frac{841 \sqrt{3}}{4}
$$

where we have used the formula for the area of an equilateral triangle. The requested sum is $630+$ $841+3+4=1478$.
4. Triangle $A B C$ has side lengths $A C=3, B C=4$, and $A B=5$. Let $R$ be a point on the incircle $\omega$ of $\triangle A B C$. The altitude from $C$ to $\overline{A B}$ intersects $\omega$ at points $P$ and $Q$. Then, the greatest possible area of $\triangle P Q R$ is $\frac{m \sqrt{n}}{p}$, where $m$ and $p$ are relatively prime positive integers, and $n$ is a positive integer not divisible by the square of any prime. Find $m+n+p$.

## Solution:



Let $I$ be the incenter of $\triangle A B C$. Let $\overline{P Q}$ and $\overleftrightarrow{R I}$ intersect at $H$. It suffices to maximize $R H$, the height of $\triangle P Q R$.

Note that $R$ must be on the right side of $\overleftrightarrow{P Q}$ because $\angle A C P=\cos ^{-1}\left(\frac{4}{5}\right)<45^{\circ}=\angle A C I$, so more than half of $\omega$ will be to the right of $\overleftrightarrow{P Q}$, so we may generate a greater value for $R H$.

Furthermore, $R, I$, and $H$ must be collinear, as the longest chord in a circle is its diameter, so the chord determined by these 3 points will give the optimal $R H$.

Let $r$ be the inradius of $\triangle A B C$, and let $a, b$, and $c$ be the side lengths of the triangle. The area of $\triangle A B C$ is $r\left(\frac{a+b+c}{2}\right)=6 r=6$, so $r=1$. Because $\triangle C H I$ is right,

$$
H I^{2}=C I^{2}-C H^{2}=2-\left(\frac{12}{5}-1\right)^{2}=\frac{1}{25} \Longrightarrow H I=\frac{1}{5}
$$

Because $\triangle P H I$ is right,

$$
P H^{2}=P I^{2}-H I^{2}=1-\frac{1}{25}=\frac{24}{25} \Longrightarrow P H=\frac{2 \sqrt{6}}{5}
$$

By symmetry, $P H=H Q$, so $P Q=\frac{4 \sqrt{6}}{5}$. From our earlier computation, $H R=H I+I R=\frac{1}{5}+1=\frac{6}{5}$. Therefore, the greatest possible area of $\triangle P Q R$ is

$$
\frac{1}{2}(P Q)(H R)=\frac{1}{2}\left(\frac{4 \sqrt{6}}{5}\right)\left(\frac{6}{5}\right)=\frac{12 \sqrt{6}}{25}
$$

The requested sum is $12+6+25=43$
5. The inequality $x^{2}+y^{2}+2 x+4 y \leq 2021$ is equivalent to $(x+1)^{2}+(y+2)^{2} \leq 2026$, which describes a circular disk of radius $\sqrt{2026}$ centered at $(-1,-2)$. Call this disk $\mathcal{D}$. The four lines specified by $x=0$, $x=-2, y=0$, and $y=-4$ partition $\mathcal{D}$ into nine smaller regions, as shown in the diagram below (which is not drawn to scale, though scale is not important for this problem). The boundary of the disk and the lines given by $x=0$ and $y=0$ are boldfaced.


The set of points $(x, y)$ in $\mathcal{D}$ with $x y>0$ can be expressed as the union of five of these regions (excluding certain points on the boundary): $\mathcal{R}_{3}, \mathcal{R}_{4}, \mathcal{R}_{5}, \mathcal{R}_{7}$, and $\mathcal{R}_{8}$. Use the notation [ $\left.\mathcal{R}\right]$ to denote the area of a two-dimensional region $\mathcal{R}$. Because of the congruence relationships $\mathcal{R}_{1} \cong \mathcal{R}_{3} \cong \mathcal{R}_{7} \cong \mathcal{R}_{9}, \mathcal{R}_{2} \cong \mathcal{R}_{8}$, and $\mathcal{R}_{4} \cong \mathcal{R}_{6}$, we have

$$
\left.\left.[\mathcal{D}]=\sum_{k=1}^{9}\left[\mathcal{R}_{k}\right]=\left[\mathcal{R}_{5}\right]+2\left(\left[\mathcal{R}_{3}\right]+\left[\mathcal{R}_{4}\right]+\left[\mathcal{R}_{7}\right]+\mathcal{R}_{8}\right]\right)=2\left(\left[\mathcal{R}_{3}\right]+\left[\mathcal{R}_{4}\right]+\left[\mathcal{R}_{5}\right]+\left[\mathcal{R}_{7}\right]+\mathcal{R}_{8}\right]\right)-\left[\mathcal{R}_{5}\right] .
$$

Therefore, the area of the desired set of points is

$$
\left[\mathcal{R}_{3} \cup \mathcal{R}_{4} \cup \mathcal{R}_{5} \cup \mathcal{R}_{7} \cup \mathcal{R}_{8}\right]=\left[\mathcal{R}_{3}\right]+\left[\mathcal{R}_{4}\right]+\left[\mathcal{R}_{5}\right]+\left[\mathcal{R}_{7}\right]+\left[\mathcal{R}_{8}\right]=\frac{[\mathcal{D}]+\left[\mathcal{R}_{5}\right]}{2}
$$

For the current problem, $\mathcal{D}$ has radius $\sqrt{2026}$, so $[\mathcal{D}]=2026 \pi$, and $\mathcal{R}_{5}$ is a 2 -by- 4 rectangle, so $\left[\mathcal{R}_{5}\right]=8$. Hence, $\frac{[\mathcal{D}]+\left[\mathcal{R}_{5}\right]}{2}=1013 \pi+4$, so the answer is 1017 .
6. Because $J M>H M>J H$, there exists a unique point $A$ on $\overline{J M}$ such that $\angle J H A=60^{\circ}$. Triangle $\triangle J H A$ is equilateral, so $A J=A H=J H$, so $A M=J M-A J=J M-J H=J T$. We also have $\angle H A M=\angle H J T=120^{\circ}$, so $\triangle H A M \cong \triangle H J T$. This congruence and the fact $\angle J H A=60^{\circ}$ imply $\angle T H M=60^{\circ}$. Therefore, $\triangle T H M$ is equilateral, so $T M=H M=20$. Since the perimeter of $J H M T$ is 68 ,

$$
68=(J H+J T)+H M+T M=J M+20+20,
$$

so $J M=68-20-20=28$.
7. For real numbers $t \in[0,14]$, let $I_{t}$ and $U_{t}$ be the points on $\overline{J H}$ and $\overline{J T}$, respectively, satisfying $H I_{t}=T U_{t}=t$, and let $N_{t}$ be the midpoint of $\overline{I_{t} U_{t}}$ (note that $N_{0}=M$ and $N_{1}=N$ ). We claim that $N_{14}=P$. First, because $I_{14}=J$, both $I_{14}$ and $U_{14}$ lie on $\overline{J T}$, so $N_{14}$ lies on $\overline{J T}$. It remains to show that $N_{14}, N_{1}$, and $N_{0}$ are all collinear. More generally, we will show that any three distinct points of the form $N_{x}, N_{y}$, and $N_{z}$ are all collinear.
Without loss of generality, let $0 \leq x<y<z \leq 14$. Treating the points on the plane as twodimensional vectors, we have $I_{y}=\frac{z-y}{z-x} I_{x}+\frac{y-x}{z-x} I_{z}$ and $U_{y}=\frac{z-y}{z-x} U_{x}+\frac{y-x}{z-x} U_{z}$. For any $t \in[0,14]$, we have $N_{t}=\frac{1}{2} I_{t}+\frac{1}{2} U_{t}$, so

$$
\begin{aligned}
N_{y} & =\frac{1}{2} I_{y}+\frac{1}{2} U_{y}=\frac{1}{2}\left(\frac{z-y}{z-x} I_{x}+\frac{y-x}{z-x} I_{z}\right)+\frac{1}{2}\left(\frac{z-y}{z-x} U_{x}+\frac{y-x}{z-x} U_{z}\right) \\
& =\frac{z-y}{z-x}\left(\frac{1}{2} I_{x}+\frac{1}{2} U_{x}\right)+\frac{y-x}{z-x}\left(\frac{1}{2} I_{z}+\frac{1}{2} U_{z}\right)=\frac{z-y}{z-x} N_{x}+\frac{y-x}{z-x} N_{z} .
\end{aligned}
$$

Since $N_{y}$ is a weighted average of $N_{x}$ and $N_{z}, N_{y}$ lies on $\overline{N_{x} N_{z}}$.
This means that $M=N_{0}, N=N_{1}$, and $N_{14}$ are collinear, so $N_{14}$ must equal $P$. Thus, $P$ is the midpoint of $\overline{I_{14} U_{14}}$ and satisfies $T P=T U_{14}+U_{14} P=14+\frac{16-14}{2}=15$. By the Law of Cosines, we have

$$
M P^{2}=T M^{2}+T P^{2}-2 T M \cdot T P \cdot \cos \angle T
$$

We also know

$$
J H^{2}=T H^{2}+T J^{2}-2 T H \cdot T J \cdot \cos \angle T
$$

Plugging in $J H=14, T J=16, T H=10, T M=5$, and $T P=15$ yields $\cos \angle T=\frac{1}{2}$ and

$$
M P^{2}=25+225-2 \cdot 5 \cdot 15 \cdot \frac{1}{2}=250-75=175 .
$$

8. Let $\theta=\angle B A C$. Let $P$ and $Q$ be the centers of $\Omega$ and $\omega$, respectively. Then, $\angle B P C=2 \theta, \angle E Q F=$ $180^{\circ}-\angle E A F=180^{\circ}-\angle B A C=180^{\circ}-\theta$, and $\angle X D Y=\angle E D F=\frac{1}{2} \angle E Q F=90^{\circ}-\frac{\theta}{2}$. With $r$ denoting the radius of $\Omega$, we have the formula $X Y=2 r \sin \angle X D Y$, so

$$
X Y=2 r \sin \left(90^{\circ}-\frac{\theta}{2}\right)=2 r \cos \left(\frac{\theta}{2}\right)=2 r \sqrt{\frac{1+\cos \theta}{2}}
$$

We also know $B C=2 r \sin \angle B A C=2 r \sin \theta$. Thus, $\sin \theta=\frac{B C}{2 r}$, so $\cos \theta=\sqrt{1-\left(\frac{B C}{2 r}\right)^{2}}$. We now plug in $r=49 \sqrt{3}$ and $B C=48$ and obtain

$$
\cos \theta=\sqrt{1-\left(\frac{24}{49 \sqrt{3}}\right)^{2}}=\sqrt{\frac{49^{2}-24 \cdot 8}{49^{2}}}=\sqrt{\frac{2209}{49^{2}}}=\frac{47}{49}
$$

so $X Y=2 \cdot 49 \sqrt{3} \cdot \sqrt{\frac{1+47 / 49}{2}}=98 \sqrt{3} \cdot \sqrt{\frac{48}{49}}=\frac{98 \sqrt{3} \cdot 4 \sqrt{3}}{7}=14 \cdot 4 \cdot 3=168$.
9. Reflect points $B$ and $E$ over line $\overleftrightarrow{A C}$, and let their images be $B^{\prime}$ and $E^{\prime}$, respectively. Notice that $\triangle C B B^{\prime}$ is isosceles and that $B, D$, and $E^{\prime}$ are collinear. To model the arithmetic sequence of lengths from the problem statement, set $D E^{\prime}=D E=x, D A=x+d, D C=x+2 d$, and $D B=x+3 d$, for positive integers $x$ and $d$ ( $d$ must be positive because $\triangle D A B$ has hypotenuse length $D B=x+3 d$, which must exceed the leg length $D A=x+d$ ). We employ mass points, and in general, we will use $m_{P}$ to denote the mass of some point $P$. First analyzing line segment $\overline{B E^{\prime}}$, we assign $m_{B}=x$ and $m_{E^{\prime}}=x+3 d$ so that $D$ is the center of mass of $B$ and $E^{\prime}$. Because the cevian $\overline{C A}$ is a median of $\triangle C B B^{\prime}$, we set $m_{B}=m_{B^{\prime}}=x$ and hence $m_{A}=m_{B}+m_{B^{\prime}}=2 x$. Then, $m_{C}=m_{E^{\prime}}-m_{B^{\prime}}=(x+3 d)-x=3 d$. The values of $x$ and $d$ must satisfy the center-of-mass equation $m_{A} \cdot D A=m_{C} \cdot D C$ :
$2 x(x+d)=3 d(x+2 d) \Longrightarrow 2 x^{2}+2 d x=3 d x+6 d^{2} \Longrightarrow 2 x^{2}-d x-6 d^{2}=0 \Longrightarrow(x-2 d)(2 x+3 d)=0$.
So $x=2 d$, meaning $D E=D E^{\prime}=2 d, D A=3 d, D C=4 d$, and $D B=5 d$. Applying the Pythagorean Theorem to $\triangle D A B$, we obtain $A B=4 d$. Because $A C=A D+D C=3 d+4 d=7 d$, the area of $\triangle A B C$ is $\frac{1}{2} \cdot 4 d \cdot 7 d=14 d^{2}$. The smallest integer greater than 1000 that can be written in the form $14 d^{2}$ for an integer $d$ is 1134 , attained when $d=9$.
10. Here is a diagram for the problem:


We start by computing $A M$. Note that $J A M T$ is a cyclic trapezoid and hence is an isosceles trapezoid. Thus, $J T=A M=6$.

We proceed by finding $J M$. Let us construct rectangle $J P T R$ (which has diagonal $\overline{J T}$ ), where $R$ is a point on line $J H$. Then, we have that $H M=J T=P R=6$, so $H M P R$ is an isosceles trapezoid and hence is cyclic; thus, $R$ lies on the circumcircle of $\triangle H M P$. From here, define $S$ to be the intersection of JPTR's diagonals. Note that

$$
P S \cdot S R=J S \cdot S T=3 \cdot 3=9 .
$$

Since $\overline{P R}$ is a chord of the circumcircle of $\triangle H M P$ and $\overline{J T}$ is a chord of the circumcircle of $\triangle J M T$, we can conclude that $S$ has equal power with respect to both of these circles, which means that $S$ lies on the radical axis of the circles. Thus, $S$ lies on $\overline{M Q}$. By the Power of a Point Theorem, we have

$$
J S \cdot S T=M S \cdot S Q=9
$$

Furthermore,

$$
M S+S Q=10
$$

so $\{M S, S Q\}=\{1,9\}$. Using Stewart's Theorem on $\triangle J M T$, we have

$$
M T^{2} \cdot J S+J M^{2} \cdot S T=M S^{2} \cdot J T+J S \cdot J T \cdot S T \Longrightarrow J M=\sqrt{2 M S^{2}-103}
$$

If $M S=1$, then $J M$ is nonreal, so we must have $M S=9$, which yields $J M=\sqrt{59}$.
We conclude by determining $A J$. To do this, we employ Ptolemy's Theorem on isosceles trapezoid $J A M T$ :

$$
A J \cdot M T+J T \cdot A M=J M \cdot A T \Longrightarrow 11 A J+36=59 \Longrightarrow A J=\frac{23}{11} .
$$

Therefore, the perimeter of $\triangle J A M$ is

$$
A M+J M+A J=6+\sqrt{59}+\frac{23}{11}=\sqrt{59}+\frac{89}{11}
$$

so the requested sum is $59+89+11=159$.

