Tiebreakers

2018

1. A large pond contains infinitely many lily pads labelled $1,2,3, \ldots$, placed in a line, where for each k, lily pad $k+1$ is one unit to the right of lily pad k. A frog starts at lily pad 100. Each minute, if the frog is at lily pad n, it hops to lily pad $n+1$ with probability $\frac{n-1}{n}$, and hops all the way back to lily pad 1 with probability $\frac{1}{n}$. Let N be the position of the frog after 1000 minutes. What is the expected value of N ?
2. A cat is tied to one corner of the base of a tower. The base forms an equilateral triangle of side length 4 m , and the cat is tied with a leash of length 8 m . Let A be the area of the region accessible to the cat. If we write $A=\frac{m}{n} \pi+k \sqrt{\ell}$, where m, n, k, ℓ are positive integers such that m and n are relatively prime, and ℓ is squarefree, what is the value of $m+n+k+\ell$?
3. Compute

$$
\sum_{n=1}^{\infty}\left(\frac{1}{n^{2}+3 n}-\frac{1}{n^{2}+3 n+2}\right)
$$

4. Find the sum of the real roots of $f(x)=x^{4}+9 x^{3}+18 x^{2}+18 x+4$.
5. Let a, b, c, d, e be the roots of $p(x)=2 x^{5}-3 x^{3}+2 x-7$. Find the value of

$$
\left(a^{3}-1\right)\left(b^{3}-1\right)\left(c^{3}-1\right)\left(d^{3}-1\right)\left(e^{3}-1\right)
$$

