Team Round

2018

1. Anita plays the following single-player game: She is given a circle in the plane. The center of this circle and some point on the circle are designated "known points". Now she makes a series of moves, each of which takes one of the following forms:
(i) She draws a line (infinite in both directions) between two "known points"; or
(ii) She draws a circle whose center is a "known point" and which intersects another "known point".
Once she makes a move, all intersections between her new line/circle and existing lines/circles become "known points", unless the new/line circle is identical to an existing one. In other words, Anita is making a ruler-and-compass construction, starting from a circle.

What is the smallest number of moves that Anita can use to construct a drawing containing an equilateral triangle inscribed in the original circle?
2. Compute the sum $\sum_{n=1}^{200} \frac{1}{n(n+1)(n+2)}$.
3. Let p be the third-smallest prime number greater than 5 such that:

- $2 p+1$ is prime, and
- $5^{p} \not \equiv 1(\bmod 2 p+1)$.

Find p.
4. If Percy rolls a fair six-sided die until he rolls a 5 , what is his expected number of rolls, given that all of his rolls are prime?
5. Let $\triangle A B C$ be a right triangle such that $A B=3, B C=4, A C=5$. Let point D be on $A C$ such that the incircles of $\triangle A B D$ and $\triangle B C D$ are mutually tangent. Find the length of $B D$.
6. Karina has a polynomial $p_{1}(x)=x^{2}+x+k$, where k is an integer. Noticing that p_{1} has integer roots, she forms a new polynomial $p_{2}(x)=x^{2}+a_{1} x+b_{1}$, where a_{1} and b_{1} are the roots of p_{1} and $a_{1} \geq b_{1}$. The polynomial p_{2} also has integer roots, so she forms a new polynomial $p_{3}(x)=x^{2}+a_{2} x+b_{2}$, where a_{2} and b_{2} are the roots of p_{2} and $a_{2} \geq b_{2}$. She continues this process until she reaches $p_{7}(x)$ and finds that it does not have integer roots. What is the largest possible value of k ?
7. For a positive number n, let $g(n)$ be the product of all $1 \leq k \leq n$ such that $\operatorname{gcd}(k, n)=$ 1 , and say that $n>1$ is reckless if n is odd and $g(n) \equiv-1(\bmod n)$. Find the number of reckless numbers less than 50 .
8. Find the largest positive integer n that cannot be written as $n=20 a+28 b+35 c$ for nonnegative integers a, b, and c.
9. Say that a function $f:\{1,2, \ldots, 1001\} \rightarrow \mathbb{Z}$ is almost polynomial if there is a polynomial $p(x)=a_{200} x^{200}+\cdots+a_{1} x+a_{0}$ such that each a_{n} is an integer with $\left|a_{n}\right| \leq 201$, and such that $|f(x)-p(x)| \leq 1$ for all $x \in\{1,2, \ldots, 1001\}$. Let N be the number of almost polynomial functions. Compute the remainder upon dividing N by 199.
10. Let $A B C$ be a triangle such that $A B=13, B C=14, A C=15$. Let M be the midpoint of $B C$ and define $P \neq B$ to be a point on the circumcircle of $A B C$ such that $B P \perp P M$. Furthermore, let H be the orthocenter of $A B M$ and define Q to be the intersection of $B P$ and $A C$. If R is a point on $H Q$ such that $R B \perp B C$, find the length of $R B$.

