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1. A dog on a 10 meter long leash is tied to a 10 meter long, infinitely thin section of fence.
What is the minimum area over which the dog will be able to roam freely on the leash, given
that we can fix the position of the leash anywhere on the fence?

Proposed by Oriel Humes

Answer
75π

Solution
Suppose the leash is fixed to a point on the fence which is a distance x away from the left
end of the fence.

The dog can always roam in a semicircle of radius 10 meters if she stays on the same side of
the fence the leash is tied to. She can also roam around the corners of the fence, which adds
an additional roaming region of two semicircles of radius x and 10− x.

Hence the total area the dog can roam is

π

2

(
102 + x2 + (10− x)2

)
.

By the QM-AM inequality, we have

x2 + (10− x)2 ≥
(

x + (10− x)
2

)2

= 52

with equality exactly when x = 5.
Thus the minimum area the dog can roam is

π

2

(
102 + 52

)
= 75π.

2. Suppose that the equation

C H M M C
+ H M M T

P U M A C

holds true, where each letter represents a single nonnegative digit, and distinct letters rep-
resent different digits (so that C H M M C and P U M A C are both five digit positive
integers, and the number H M M T is a four digit positive integer).

What is the largest possible value of the five digit positive integer C H M M C ?

Proposed by Shyan Akmal
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Answer
65996

Solution
By looking at the least significant digit of the terms in the given sum, we see that T = 0 is
forced.

By looking at the most significant digit of the terms in the given sum, and using the fact that
C 6= P, we see that P = C + 1 is forced.

The above two observations imply that the equation

H M M
+ H M M
1 U M A

must hold true as well.

The above equation is equivalent to

200H + 22M = 1000 + 100U + A

which after canceling Ms yields

200H + 12M = 1000 + 100U + A.

Since the left hand side is a multiple of 4 and 1000 + 100U is a multiple of 4, the above
equation implies that A is an integer multiple of 4 as well.

Since A is a digit, it follows that A = 4A′ for some A′ ∈ {1, 2}. If we substitute this into the
above equation, we get

50H + 3M = 250 + 25U + A′.

We can then rearrange the above equation to get

25 (10 + U− 2H) = 3M− A′.

The left hand is divisible by 25, so the right hand side is a multiple of 25 as well. Since
A′ ∈ {1, 2} and M is a digit, it follows that the right hand side must equal 25.
This forces A′ = 2 and M = 9. Substituting this into the above equation yields

2H− U = 9.

This last equation only has solutions

(H, U) ∈ {(5, 1), (6, 3), (7, 5), (8, 7), (9, 9)}.

Since we want to maximize C H M M C, we want to maximize the value of C. To do this we
just take C = 6 to be as large as possible, which then results in H = 5, which yields

C H M M C = 65996.
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3. Square ABCD has side length 4, and E is a point on segment BC such that CE = 1. Let C1
be the circle tangent to segments AB, BE, and EA, and C2 be the circle tangent to segments
CD, DA, and AE.

What is the sum of the radii of circles C1 and C2?

Proposed by Shyan Akmal

Answer
7/3

Solution
Let X denote the intersection of line AE with line CD.

We first observe that ABE is a 3-4-5 triangle. Thus it has inradius 3+4−5
2 = 1.

Then because C1 is the incircle of ABE, it has radius 1.

Now because AB and DX are parallel lines, we have ∠DXA = ∠EAB. Since XDA and
ABE are both right triangles, it follows that XDA ∼ ABE are similar.

The ratio of the similtude from XDA to ABE is DA/BE = 4/3.

Then because C2 is the incircle of XDA, it has radius 4/3 · 1 = 4/3.
Thus the sum of the radii of C1 and C2 is 7/3.

4. A finite set S of points in the plane is called tri-separable if for every subset A ⊆ S of the
points in the given set, we can find a triangle T such that

(i) every point of A is inside T , and

(ii) every point of S that is not in A is outside T .

What is the smallest positive integer n such that no set of n distinct points is tri-separable?

Proposed by Albert Tseng

Answer
8

Solution
We can verify by inspection that if we take S to be the vertices of a regular heptagon then S
is tri-separable. Thus n > 7.
Now, take an arbitrary set S of 8 points in the plane and consider the convex hull Ω of S.

If one of the points of S is not on Ω, we can consider the subset A of all the points on Ω.

It is clear that there is no triangle which has A in its interior yet has S \ A in its exterior (since
a triangle is itself a convex figure). Hence in this case S is not tri-separable.

Otherwise, all points in S are on Ω. In this case take A to be “every other” point on Ω,
starting with some arbitrary point in the set and moving anticlockwise around Ω.
If we appeal to the fact that triangles are convex and only have three sides, we can show that
there is no way for a triangle to contain exactly the points of A in its interior in our above
setup.

Hence in this case as well S is not tri-separable. Thus n = 8.
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5. The unit 100-dimensional hypercube H is the set of points (x1, x2, . . . , x100) in R100 such
that xi ∈ {0, 1} for i = 1, 2, . . . , 100. We say that the center of H is the point(

1
2

,
1
2

, . . . ,
1
2

)
in R100, all of whose coordinates are equal to 1/2.

For any point P ∈ R100 and positive real number r, the hypersphere centered at P with radius
r is defined to be the set of all points in R100 that are a distance r away from P.

Suppose we place hyperspheres of radius 1/2 at each of the vertices of the 100-dimensional
unit hypercube H. What is the smallest real number R, such that a hypersphere of radius R
placed at the center of H will intersect the hyperspheres at the corners of H?

Proposed by Oriel Humes

Answer
9/2

Solution
By the Pythagorean theorem, the longest diagonal of H has length

√
100 = 10.

Hence the smallest hypersphere placed at the center of H which intersects the hyperspheres
in the corners must have diameter 10− 2(1/2) = 9 (this is just the length of the longest
diagonal minus the radii of the two hyperspheres at opposite corners of H).

It follows that the smallest possible radius R is 9/2.

6. Greg has a 9× 9 grid of unit squares. In each square of the grid, he writes down a single
nonzero digit.

Let N be the number of ways Greg can write down these digits, so that each of the nine
nine-digit numbers formed by the rows of the grid (reading the digits in a row left to right)
and each of the nine nine-digit numbers formed by the columns (reading the digits in a column
top to bottom) are multiples of 3.

What is the number of positive integer divisors of N?

Proposed by Shyan Akmal

Answer
146

Solution
In the following solution, we appeal to the fact that an integer is divisible by 3 if and only if
the sum of its digits is divisible by 3.

Consider the top left 8× 8 subgrid of squares. Greg can fill these 82 = 64 entries arbitrarily
with nonzero digits. There are 964 = 3128 ways to do this.

Once he does this, for each row, there is unique value modulo 3 that can be placed in the final
entry of that row to ensure that the number in that row (reading left to right) is divisible by
3. The same reasoning holds for each column of the grid.

Since each residue modulo 3 corresponds to three positive digits, it follows that there are
32·9−1 = 317 ways to fill in the bottom row and rightmost column of the grid.
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Overall then there are N = 3128+17 = 3145 ways to fill in the grid. Thus the number of
positive integer divisors of N is just 145 + 1 = 146.

Note: In the above solution, we technically need to be careful about how we fill in the bottom
rightmost entry of the grid, since it’s value affects both the bottom row number and the
rightmost column number, and it might not be clear how we can ensure that both of these
numbers will simultaneously be multiples of 3.

However, it turns out that our choice of that value (uniquely determined modulo 3) still always
works out, and we can prove this by considering the sum of all of the entries in the grid (first
by rows, then by columns).

7. Find the largest positive integer n for which there exists positive integers x, y, and z satisfying

n · gcd(x, y, z) = gcd(x + 2y, y + 2z, z + 2x).

Proposed by Vinayak Kumar & Gideon Leeper

Answer
9

Solution
Let d = gcd(x, y, z).
Then we may write x = da, y = db, y = dc for some integers a, b, c satisfying gcd(a, b, c) = 1.
With this representation, the given equation simplifies to

n = gcd(a + 2b, b + 2c, c + 2a).

Since n divides all the arguments on the right hand side, n must also divide

(a + 2b) + 2(b + 2c) + 4(c + 2a) = 9a + 4(b + 2c).

Then because n divides b + 2c, the above equation implies that n also divides 9a.
Similar reasoning shows that n divides 9b and 9c.

It follows that n divides

gcd(9a, 9b, 9c) = 9 · gcd(a, b, c) = 9.

Hence n ≤ 9. We can show that n = 9 is achievable by taking (x, y, z) = (1, 4, 7), since in
this case

gcd(x, y, z) = 1

and
gcd(x + 2y, y + 2z, z + 2x) = gcd(9, 18, 9) = 9

so n = 9 is our final answer.

8. Suppose ABCDEFGH is a cube of side length 1, one of whose faces is the unit square
ABCD. Point X is the center of square ABCD, and P and Q are two other points allowed to
range on the surface of cube ABCDEFHG. Find the largest possible volume of tetrahedron
AXPQ.

Proposed by Adam Busis
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Answer
1/6

Solution
Fix point P somewhere on the cube. Then because the cube is convex, the volume of AXPQ
will be maximized (for this fixed position of P) when Q is at one of the vertices of the cube.

The same reasoning holds if we fix Q and instead try to maximize the volume by moving P.
It follows that to maximize the volume of AXPQ, we can set P and Q to both be vertices of
the cube.

From here we can just go through different cases for the placement of P and Q. After we
check these cases, the maximum possible volume ends up being 1/6.

9. Deep writes down the numbers 1, 2, 3, . . . , 8 on a blackboard. Each minute after writing down
the numbers, he uniformly at random picks some number m written on the blackboard, erases
that number from the blackboard, and increases the values of all the other numbers on the
blackboard by m. After seven minutes, Deep is left with only one number on the black board.

What is the expected value of the number Deep ends up with after seven minutes?

Proposed by Shyan Akmal

Answer
576

Solution

Imagine that the numbers on the blackboard occupy 8 slots.

Initially, the number k is in the kth slot of the blackboard for k = 1, 2, . . . , 8. When we increase
the values of numbers on the blackboard, they stay in the same slot.

For k = 1, 2, . . . , 8, let ak denote the slot we erase from in the kth minute. For example, a1 is
the slot number Deep first erased from, and a8 is the slot number Deep erases from last.

We can check that the final number Deep ends up with is equal to

a8 + a7 + 2a6 + 22a5 + . . . + 26a1.

Since each ai is equally likely to be any of the values from {1, 2, . . . , 8}, by linearity of
expectation we find that the expected value of the number Deep ends up with is(

1 + 2 + . . . + 8
8

)(
1 + 1 + 2 + 22 + . . . + 26

)
=

9
2
· 27 = 9 · 64 = 576.

Note: It also possible to solve this problem recursively, and using an induction argument show
that if we start off with a list S of n numbers on the board, then the expected sum we end
up with in the end is

2n−1

n
·∑

s∈S
s.
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10. Find the number of ordered tuples (x1, x2, x3, x4, x5) of positive integers such that xk ≤ 6 for
each index k = 1, 2, . . . , 5, and the sum

x1 + x2 + · · ·+ x5

is 1 more than an integer multiple of 7.

Proposed by Gideon Leeper & Felix Weilacher

Answer
1111

Solution

Let rn denote the number of ordered tuples (x1, x2, . . . , xn) of residues modulo 7 such that

x1 + x2 + · · ·+ xn ≡ 0 (mod 7).

Let sn denote the number of ordered tuples (x1, x2, . . . , xn) of residues modulo 7 such that

x1 + x2 + · · ·+ xn ≡ 1 (mod 7).

Note that for this problem, we just want to compute s5.

It turns out that for each nonzero residue k modulo 7, the number sn also counts the number
of ordered tuples (x1, x2, . . . , xn) of residues modulo 7 such that

x1 + x2 + . . . + xn ≡ k (mod 7).

This is because the map

(a1, a2, . . . , an) 7→ (ka1, ka2, . . . , kan) (mod p)

is a bijection from the solution set of

x1 + x2 + . . . + xn ≡ 1 (mod 7)

ot the solution set of
x1 + x2 + . . . + xn ≡ k (mod 7)

for each nonzero residue modulo 7.

Then by considering possible values for xn+1, the last component of a solution to any one of
these congruences, we get the recurrences rn+1 = 6sn and sn+1 = rn + 5sn. If we substitute
the first recurrence into the second recurrence we get

sn+1 = 5sn + 6sn−1 (n ≥ 1).

We can solve this linear recurrence along with the initial conditions s0 = 0 and s1 = 1 to find
that

sn =
6n − (−1)n

7
.
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It follows that the answer to the problem is

s5 =
65 + 1

7
= 1111.

Note: It is also possible to solve this problem with complex numbers or generating functions.

11. The equation (
x− 3
√

13
) (

x− 3
√

53
) (

x− 3
√

103
)
=

1
3

has three distinct real solutions r, s, and t for x.

Calculate the value of
r3 + s3 + t3.

Proposed by Shyan Akmal

Answer
170

Solution
Consider the polynomial f (x) =

(
x− 3
√

13
) (

x− 3
√

53
) (

x− 3
√

103
)

.

Let α = 3
√

13, β = 3
√

53, and γ = 3
√

103 be the roots of f . Note that r, s, and t are roots of

f (x)− 1/3.

By Vieta’s formulas we then have

r + s + t = α + β + γ

rs + st + tr = αβ + βγ + γα

rst = αβγ +
1
3

.

From the factorization (valid for all complex numbers u, v, w)

u3 + v3 + w3 − 3uvw = (u + v + w)
(
(u + v + w)2 − 3(uv + vw + wu)

)
and the first two equations from above we know that

r3 + s3 + t3 − 3rst = α3 + β3 + γ3 − 3αβγ.

It follows then, using the third equation from above, that

r3 + s3 + t3 =
(

α3 + β3 + γ3
)
+ 3(rst− αβγ) = (13 + 53 + 103) + 3 · 1

3
= 170.

Note: More generally, if f (x) is a polynomial of degree n ≥ 1 with roots α1, α2, . . . , αn
and f (x)− c has roots r1, r2, . . . , rn (where c is some complex number), then using Newton’s
sums one can show that for ` = 1, 2, . . . , n− 1 we have
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r`1 + r`2 + . . . + r`n = α`1 + α`2 + . . . + α`n.

Additionally, we have

rn
1 + rn

2 + . . . + rn
n = αn

1 + αn
2 + . . . + αn

n + (−1)n+1nc.

12. Suppose a, b, and c are real numbers such that

ac
a + b

+
ba

b + c
+

cb
c + a

= −9

and
bc

a + b
+

ca
b + c

+
ab

c + a
= 10.

Compute the value of
b

a + b
+

c
b + c

+
a

c + a
.

Proposed by Shyan Akmal

Answer
11

Solution
Adding the two given equations and collecting terms with the same denominator yields

a + b + c = 1. (?)

Subtracting the the two given equations yields

∑
cyc

c(a− b)
a + b

= −19. (∗)

Let us call the value we want to find V, and define the natural complementary value

U =
a

a + b
+

b
b + c

+
c

c + a
.

First off, we have
U + V = 3

just by collecting terms with the same denominator.

We also have

U −V = ∑
cyc

a− b
a + b

.
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In fact, if we multiply (?) to the above equation and simplify we find that

U −V = ∑
cyc

(
(a + b + c) · a− b

a + b

)
= ∑

cyc

(
(a− b) +

c(a− b)
a + b

)
= ∑

cyc

(a− b) + ∑
cyc

c(a− b)
a + b

= −19

where in the last step we used (∗).
With this, we can then compute the answer as

V =
(U + V)− (U −V)

2
=

3− (−19)
2

= 11.

13. The complex numbers w and z satisfy the equations |w| = 5, |z| = 13, and

52w− 20z = 3(4 + 7i).

Find the value of the product wz.

Proposed by Evan Liang

Answer
33− 56i

Solution
Notice that

52z1 − 20z2 = 52z1
z2z2

132 − 20z2
z1z1

52

= 4z1z2(
z2

13
− z1

5
)

= z1z2

(
20z2 − 52z1

65

)
.

It follows that

z1z2 = −65
52z1 − 20z2

52z1 − 20z2

= −65
52z1 − 20z2

52z1 − 20z2

= −65
3(4 + 7i)
3(4− 7i)

= −65
(4 + 7i)2

42 + 72

= −(4 + 7i)2

= 33− 56i
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is the value of the product of the two complex numbers.

14. For i = 1, 2, 3, 4, we choose a real number xi uniformly at random from the closed interval
[0, i]. What is the probability that x1 < x2 < x3 < x4 ?

Proposed by Adam Busis

Answer
125/576

Solution

We can break into cases based on which unit interval [n− 1, n] each of the xi is in.

For example, if x1, x2 ∈ [0, 1] and x3, x4 ∈ [1, 2] then the probability that x1, x2, x3, x4 are
strictly increasing is (1/2)(1/2) = 1/4. If we use (a1, a2, a3, a4) to denote the case where
xi ∈ [ai − 1, ai] then the probabilities of each case are:

• 1/24 for (1, 1, 1, 1)

• 1/6 for (1, 1, 1, 2), (1, 1, 1, 3), (1, 1, 1, 4), (1, 2, 2, 2)

• 1/4 for (1, 1, 2, 2), (1, 1, 3, 3)

• 1/2 for (1, 1, 2, 3), (1, 1, 2, 4), (1, 1, 3, 4), (1, 2, 2, 3), (1, 2, 2, 4), (1, 2, 3, 3)

• 1 for (1, 2, 3, 4)

Adding these up and multiplying by 1/24 (the probability for each case) gives the answer.

Note: Alternate solutions to the general case of this problem (where we look at n randomly
chosen numbers instead of just 4, where n is some positive integer) can be found a as the
solutions to HMMT February C10.

15. The terms of the infinite sequence of rational numbers a0, a1, a2, . . . satisfy the equation

an+1 + an−2 = anan−1

for all integers n ≥ 2.

Moreover, the values of the initial terms of the sequence are

a0 =
5
2

, a1 = 2, and a2 =
5
2

.

Call a nonnegative integer m lucky if when we write

am =
p
q

for some relatively prime positive integers p and q, the integer p + q is divisible by 13.

What is the 101st smallest lucky number?

Proposed by Shyan Akmal
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Answer
1207

Solution
Using induction, we can show that

an = 2Fn−1 + 2−Fn−1

for all positive integers n, where Fn denotes the nth term in the Fibonacci sequence

F−1 = 1, F0 = 0, F1 = 1, F2 = 2, . . .

So for any nonnegative integer m, when we write am = p/q for relatively prime positive
integers p and q, we must have p = 22Fm−1 + 1 and q = 2Fm−1 .
Thus m is lucky if and only if 13 | 22Fm−1 + 2Fm−1 + 1.
From here there are multiple ways to finish.

One approach is to note that the above divisibility condition just means that 2Fm−1 is a root
of x2 + x + 1 modulo 13. Since 13 = 32 + 3 + 1, one root of x2 + x + 1 modulo 13 is 3. By
Vieta’s formulas, the other root is −1− 3 = −4 ≡ 9 (mod 13).
So m is lucky if and only if 2Fm−1 ∈ {3, 9} (mod 13).
Since 2 is a primitive root modulo 13, and 24 = 16 ≡ 3 (mod 13), the above condition is
equivalent to requiring Fm−1 ∈ {4, 8} (mod 12).
We can verify by inspection (for example, by looking at the terms of the Fibonacci sequence
modulo 12, or by looking at the terms of Fibonacci sequence modulo 3 and 4 and using the
Chinese Remainder Theorem) that the above condition holds if and only if m ≡ 7 (mod 12).
Thus m is lucky if and only if it is 7 more than a nonnegative multiple of 12. So the 101st

smallest lucky number is
100 · 12 + 7 = 1207.
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