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Problem 1. Let an be the nth positive integer such that when n is written in base 3, the sum of the digits
of n is divisible by 3. For example, a1 = 5 because 5 = 123. Compute a2016.

Solution 1. 6049 . The observation to make is that for three consecutive numbers 3k, 3k+ 1, 3k+ 2, exactly
one number will have a base 3 representation that has digital sum divisible by 3 because the digital sums of
these three numbers are distinct in mod 3. In particular, an ∈ (3n, 3n+ 1, 3n+ 2). It remains to check the
triple (6048, 6049, 6050) to see which number has the correct base 3 representation, and 6049 = 220220013.

Problem 2. Consider the 5 × 5 grid Z2
5 = {(a, b) : 0 ≤ a, b ≤ 4}. Say that two points (a, b), (x, y) are

adjacent if a− x ≡ −1, 0, 1 (mod 5) and b− y ≡ −1, 0, 1 (mod 5) . For example, in the diagram, all of the
squares marked with · are adjacent to the square marked with ×.

× · ·
· · ·

· · ·

What is the largest number of × that can be placed on the grid such that no two are adjacent?

Solution 2. 5 . First, see that we can place 5 × on the grid. Start with one × in any location. Fix a
direction, make one knight’s move away in that direction and place another ×. Repeat three times. The
result looks like this:

× · ·
· · ·

· · ·

×
×

×
×

Next, we see that we can’t have more than 5. Suppose we did. Then by pigeonhole, at least one column
has at least two × in it. In the remainder, we show that if some column has two ×, then there are at most
4 × in the whole grid.

Notice that a column may not have more than two × in it. Furthermore, if one column has two ×, then
the adjacent columns must be empty. Then there are two columns not adjacent to the column which has
two × in it. If either column has two ×, then the other is empty. Therefore, there are at most two × among
them.

Problem 3. For a positive integer m, let f(m) be the number of positive integers q ≤ m such that q2−4
m is

an integer. How many positive square-free integers m < 2016 satisfy f(m) ≥ 16?
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Solution 3. Note that q2 ≡ 4 (mod p1 · · · pk) if and only if q ≡ ±2 (mod pi) for every 1 ≤ i ≤ k, where the
pi are distinct primes. Then letting m = p1 · · · pk, we see that f(m) = 2k if 2 - m and f(m) = 2k−1 if 2 | m.
Thus, f(m) ≥ 16 if and only if m is divisible by at least 4 odd primes. Some quick enumeration shows that
the only such values for m less than 2016 are 3 · 5 · 7 · 11, 3 · 5 · 7 · 13, 3 · 5 · 7 · 17, and 3 · 5 · 7 · 19. Thus there
are 4 possibilities.

Problem 4. Line segments m and n both have length 2 and bisect each other at an angle of 60◦, as shown.
A point X is placed at uniform random position along n, and a point Y is placed at a uniform random
position along m. Find the probability that the distance between X and Y is less than 1

2 .

Solution 4. Let x and y be variables chosen randomly and uniformly from the range [−1, 1] representing the
positions of X and Y along n and m, respectively, with a value of 1 for each representing the left-most point
on their line-segments in the diagram above. Then letting z be the distance between X and Y , by the law
of cosines and a simple case analysis,

x2 + y2 = z2 + 2xy cos(60◦) = z2 + xy,

so our condition is equivalent to x2 − xy + y2 < 1
4 . We can rewrite this as (x + y)2 + 3(x− y)2 < 1, which

shows that the region in the x, y plane satisfying our condition is an ellipse with semi-major/minor axes
along the directions (1, 1) and (1,−1), as shown.

We now solve for the lengths of these axes. If x+ y = 0, then x = −y, so 3(2x)2 < 1⇒ x2 < 1
12 ⇒ |x| <

1√
12

. Thus one of the semi-axes goes from (0, 0) to ( 1√
12
, −1√

12
), hence has length 1√

6
. Similarly, if x− y = 0,

then (2x)2 < 1⇒ |x| < 1
2 , so one of the semi-axes goes from (0, 0) to ( 1

2 ,
1
2 ), hence has length 1√

2
. The area

of the ellipse is thus π 1√
6

1√
2

= π
2
√
3
. The total region from which we are choosing (x, y) is a square of side

length 2, thus of area 4. Our answer is thus π
2
√
3
· 14 = π

8
√
3

.

Problem 5. Given a triangle ABC, let D be a point on segment BC. Construct the circumcircle ω of
triangle ABD and point E on ω such that CE is tangent to ω and A,E are on opposite sides of BC(as
shown in diagram). If ∠CAD = ∠ECD and AC = 12, AB = 7, find AE.

Solution 5.

1 1

1 1

1 0

1 1

1 0
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We claim that 4CAE ∼ 4EAB, from which we conclude that

AC

AE
=
AE

AB
=⇒ AE =

√
AC ·AB = 2

√
21

.
To see the similarity, note that properties of arcs and tangents tell us that ∠ABE = ∠AEC (the first

set of angle equalities), ∠CED = ∠EAD, and ∠BAE = ∠BDE. Thus

∠BAE = ∠BDE = ∠ECD + ∠CED = ∠CAD + ∠EAD = ∠CAE.

This gives us the second set of angle equalities, from which we conclude that 4CAE ∼ 4EAB.

Problem 6. For any nonempty set of integers X, define the function

f(X) =
(−1)|X|(∏
k∈X

k

)2

where |X| denotes the number of elements in X.
Consider the set S = {2, 3, . . . , 13} . Note that 1 is not an element of S.
Compute ∑

T⊆S
T 6=∅

f(T ).

where the sum is taken over all nonempty subsets T of S.

Solution 6. If we add 1 to the given sum, the resulting expression is just the expanded version of the product

∏
j∈S

(
1− 1

j2

)
=

13∏
j=2

(
1− 1

j2

)
.

We may rewrite the product as
13∏
j=2

j2 − 1

j2

and then apply difference of squares to get that the product is equal to

13∏
j=2

j2 − 1

j2
=

13∏
j=2

(j − 1)(j + 1)

j2

=
13∏
j=2

j − 1

j
·

13∏
j=2

j + 1

j

=
1

13
· 14

2
=

7

13

where in the transition between the second and third lines we used the fact that each individual product

telescoped. Thus the sum is equal to 7/13− 1 = −6/13 .
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Problem 7. Consider constructing a tower of tables of numbers as follows. The first table is a one by one
array containing the single number 1.

The second table is a two by two array formed underneath the first table and built as followed. For each
entry, we look at the terms in the previous table that are directly up and to the left, up and to the right,
and down and to the right of the entry, and we fill that entry with the sum of the numbers occurring there.
If there happens to be no term at a particular location, it contributes a value of zero to the sum.

1 1

1 0

1 2 1

2 2 0

1 0 0

1 1

1 0

1 2 1

2 2 0

1 0 0

The diagram above shows how we compute the second table from the first.
The diagram below shows how to then compute the third table from the second.

A

B C

D
E

F

For example, the entry in the middle row and middle column of the third table is equal the sum of the top
left entry 1, the top right entry 0, and the bottom right entry 1 from the second table, which is just 2.

Similarly, to compute the bottom rightmost entry in the third table, we look above it to the left and see
that the entry in the second table’s bottom rightmost entry is 1. There are no entries from the second table
above it and to the right or below it and to the right, so we just take this entry in the third table to be 1.

We continue constructing the tower by making more tables from the previous tables. Find the entry in
the third (from the bottom) row of the third (from the left) column of the tenth table in this resulting tower.
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Solution 7. Let a
(i)
j,k denote the entry in the jth row and kth column of the ith table in the tower, where the

row index j starts at zero (for the bottom row), the column index k starts at zero (for the leftmost column),
and the index i starts at one.

To each table in the tower, we can associate the polynomial

fi(x, y) =
i−1∑
j=0

i−1∑
k=0

a
(i)
j,kx

jyk.

The recursion we use to build up the (i + 1)th table from the ith table corresponds to the polynomial
recurrence

fi+1(x, y) = (1 + x+ y) · fi(x, y).

Since f1(x, y) = 1, it follows that
fi(x, y) = (1 + x+ y)i−1.

Hence when the problem is asking us to find the entry in the third (from the bottom) row of the third
(from the left) column of the tenth table in the tower, it is really asking us to compute the coefficient of
x2y2 in f10(x, y). There are multiple ways find the answer from this point. If we use the binomial theorem,
we can get that the answer is (

4

2

)(
9

4

)
= 6 · (9 · 2 · 7) = 756 .

Problem 8. Let n be a positive integer. If S is a nonempty set of positive integers, then we say S is
n-complete if all elements of S are divisors of n, and if d1 and d2 are any elements of S, then n/d1 and
gcd(d1, d2) are in S. How many 2310-complete sets are there?

Solution 8. Factor 2310 = 2 ·3 ·5 ·7 ·11. Recall that a partition of a set T is a collection of disjoint nonempty
subsets of T whose union is all of T . We prove that there is a 1-1 correspondence between 2310-complete
sets and partitions of F = {2, 3, 5, 7, 11}, as follows.

To each 2310-complete set, we can associate a nonempty collection of subsets of F , by replacing each
number in the set with its set of prime factors. This collection is closed under intersections and complements
in F by definition of 2310-completeness. Conversely, any collection having these properties corresponds to a
2310-complete set, by replacing each subset with the product of its elements.

Given a collection of the above form, let P be its collection of minimal nonempty sets, i.e., sets which do
not contain any smaller nonempty sets in the collection. Then P is a partition of F : any two sets in P are
disjoint and nonempty by definition; and any element of F is contained in some set in the collection because
the collection is closed under complement, and then the intersection of all sets containing that element is in
P.

Conversely, given a partition, we can form the collection of all unions of sets in the partition, which is
closed under intersections and complements. Now any collection closed under intersections and complements
is also closed under unions. Then easily the two constructions above are inverse to each other, so each
collection of the above form corresponds to a unique partition of F , proving the claim.

The answer is now the number of partitions of a 5-element set. This can be computed by case analysis
of all possible sizes for the various sets in the partition:

5 : 1 4 + 1 :

(
5

4

)
= 5 3 + 2 :

(
5

3

)
= 10

3 + 1 + 1 :

(
5

3

)
= 10 2 + 2 + 1 :

1

2

(
5

2, 2, 1

)
= 15 2 + 1 + 1 + 1 :

(
5

2

)
= 10

1 + 1 + 1 + 1 + 1 : 1

Then the answer is 1 + 5 + 10 + 10 + 15 + 10 + 1 = 52 .
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Problem 9. Find the sum of all 3-digit numbers whose digits, when read from left to right, form a strictly
increasing sequence. (Numbers with a leading zero, e.g. ”087” or ”002”, are not counted as having 3 digits.)

Solution 9. We write our numbers as abc, where a, b, and c are digits, and 1 ≤ a < b < c ≤ 9. First, we find
the sum of all the c’s. If c = 9, there are 8 remaining numbers from which to pick a and b, and given any
choice of two of those numbers, the smallest one must be a. We thus have

(
8
2

)
such numbers. Similarly, for

every 3 ≤ c ≤ 9, (note that c must be greater than 2), we have
(
c−1
2

)
choices. The sum of all the c’s is thus

9∑
c=3

c

(
c− 1

2

)
=

9∑
c=3

c(c− 1)(c− 2)

2
= 3

9∑
c=3

(
c

3

)
= 3

((
4

4

)
+

9∑
c=4

(
c

3

))
= 3

(
10

4

)
= 3 · 210 = 630,

where we have used the recursion
(
n
k

)
+
(
n
k−1
)

=
(
n+1
k

)
repeatedly. Next, we find the sum of all the b’s. To

make a number satisfying our conditions is to pick three distinct numbers from the range 1 to 9, inclusive,
and to then write them down in ascending order, so we have

(
9
3

)
= 84 such numbers. By symmetry, the

average value of b across all those numbers must be 5, so the sum of all the b’s is 5 · 84 = 420. Finally, since
the a’s and the c’s should be symmetrically distributed about the number 5, the sum of the a’s must be
420− (630− 420) = 210. Since the a’s represent hundreds, the b’s represent tens, and the c’s represent ones,

our total sum is 21000 + 4200 + 630 = 25830 .

Problem 10. Let ABC be a triangle with circumcircle ω such that AB = 11, AC = 13, and ∠A = 30◦.
Points D and E are on segments AB and AC respectively such that AD = 7 and AE = 8. There exists a
unique point F 6= A on minor arc AB of ω such that ∠FDA = ∠FEA. Compute FA2.

Solution 10.

A

B C

D
E

F

∠FDA = ∠FEA, so quadrilateral AFDE is cyclic. By properties of arcs, ∠FBA = ∠FCA. Also, easily
∠FDB = 180◦ −∠FDA = 180◦ −∠FEA = ∠FEC. Then by AA, triangles FBD and FCE are similar, so
FB
FC = BD

CE = AB−AD
AC−AE = 11−7

13−8 = 4
5 , so there exists a real number x such that FB = 4x and FC = 5x. By

properties of arcs and assumption, ∠BFC = ∠BAC = 30◦. Then by the Law of Cosines,

BC2 = FB2 + FC2 − 2FB · FC cos∠BFC = (4x)2 + (5x)2 − 2(4x)(5x)

(√
3

2

)
= (41− 20

√
3)x2,
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so x2 = BC2

41−20
√
3
. By Ptolemy’s Theorem, FA ·BC + FB ·AC = FC ·AB, so

FA =
FC ·AB − FB ·AC

BC
=

5x · 11− 4x · 13

BC
=

3x

BC
.

Squaring gives

FA2 =
9x2

BC2
=

9

41− 20
√

3
=

9(41 + 20
√

3)

412 − 3 · 202
=

369 + 180
√

3

481
.
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