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Problem 1. We say that dkdk−1 · · · d1d0 represents the number n in base −2 if each di is either 0 or 1,
and n = dk(−2)k + dk−1(−2)k−1 + · · ·+ d1(−2) + d0. For example, 110 represents the number 2 in base −2.
What string represents 2016 in base −2?

Solution 1. 1100000100000 . The place values for base −2 are 1, −2, 4, −8, etc. Note that 2016 =
4096− 2048− 16 = (−2)12 + (−2)11 + (−2)5.

Problem 2. Alice and Bob find themselves on a coordinate plane at time t = 0 at points A(1, 0), and
B(−1, 0). They have no sense of direction, but they want to find each other. They each pick a direction
with uniform random probability. Both Alice and Bob travel at speed 1unitmin in their chosen directions. They
continue on their straight line paths forever, each hoping to catch sight of the other. They each have a 1-unit
radius field of view: they can see something iff its distance to them is at most 1. What is the probability that
they will ever see each other?

Solution 2. We can look at the problem from the eyes of Alice, in which case Bob starts at point B(−2, 0).
From Alice’s perspective, Bob moves in a direction and speed decided by the difference of their two velocity
vectors. Then by assumption, the direction and speed that Bob moves is the sum of two uniform random
unit vectors. By symmetry, this direction is uniform random. Thus from Alice’s perspective, Bob starts
at point B(−2, 0) and moves in a uniform random direction. Since the question asks the probability that
they will ever see each other, we can ignore the speed at which Bob moves. Then the probability that he

will enter Alice’s vision, which is a unit circle centered at the origin, is 1/6 . This can be seen by drawing

tangent lines to the circle going through point B and noticing the two 30− 60− 90 triangles.

Problem 3. A gambler offers you a $2 ticket to play the following game. First, you pick a real number
0 ≤ p ≤ 1. Then, you are given a weighted coin with probability p of coming up heads and probability 1− p
of coming up tails, and flip this coin twice. The first time the coin comes up heads, you receive $1, and the
first time it comes up tails, you receive $2. Given an optimal choice of p, what is your expected net winning?

Solution 3. Fix p. The probability of flipping HH is p2, and flipping HH wins you $1, the probability of
flipping HT or TH is 2p(1− p), and either wins you $3, and the probability of flipping TT is (1− p)2, and
this wins you $2. Thus your expected winnings from the game are p2 +6p(1−p)+2(1−p)2 = −3p2 +2p+2,
which has a maximum of 7/3 at p = 1/3. Taking into account your initial loss of $2 on the ticket, your

expected net gain for the optimal choice p = 1/3 is 7/3− 2 = 1/3 .

Problem 4. Compute ∑
n≥1

2n+1

8 · 4n − 6 · 2n + 1
.
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Solution 4. We can telescope the sum by writing∑
n≥1

2n+1

8 · 4n − 6 · 2n + 1
=
∑
n≥1

(2n+2 − 1)− (2n+1 − 1)

(2n+1 − 1)(2n+2 − 1)

=
∑
n≥1

(
1

2n+1 − 1
− 1

2n+2 − 1

)

=
1

22 − 1
=

1

3
.

Problem 5. Suppose you have 27 identical unit cubes, where on each cube the three faces adjacent to one
vertex are colored red, and the three faces adjacent to the opposite vertex are colored blue. The cubes are
assembled randomly into a single 3 by 3 by 3 cube. (In particular, the orientation of each unit cube is
distributed uniformly over the possible orientations.) The probability that the outside of this cube is entirely
a single color is equal to 1

2n . Find n.

Solution 5. Consider the probability that the outside of the cube is entirely red. For each corner cube, there
is a 1/8 chance that the three red faces will face outward. For each edge cube, there is a 1/4 chance that
two red faces will face outward (because out of the 12 edges on the cube, 3 of them are adjacent to two red
faces). For each face cube, there is a 1/2 chance that a red face will face outward. So the probability is
(1/8)8(1/4)12(1/2)6. The probability that the cube is all blue is the same, so the chance that the cube is all

red or all blue is 2(1/8)8(1/4)12(1/2)6 = 1/253. The answer is n = 53 .

Problem 6. How many binary strings of length 10 are there that don’t contain either of the substrings 101
or 010?

Solution 6. Given a valid string of length n− 1 that ends in 1 (resp. 0), we can append a 1 (resp. 0) to get
a valid string of length n. Also, given a valid string of length n− 2 that ends in 1 (resp. 0), we can append
10 (resp. 01) to get a valid string of length n. Every string of length n can be formed in one of these two
ways, so if Sn is the number of valid strings of length n, then Sn = Sn−1 + Sn−2 for n ≥ 3. Since S1 = 2

and S2 = 4, we can use the recurrence to calculate S10 = 178 .

Problem 7. Let f(x) = 1
1− 3x

16

. Consider the sequence 0, f(0), f(f(0)), f3(0), . . . fn(0), . . .. Find the smallest

L such that fn(0) ≤ L for all n. If no such L exists, write “none”.

Solution 7. Solve the quadratic equation x = f(x) = 1
1− 3x

16

. This has solutions x = 4
3 , x = 4. Now examine

the first few terms of the sequence: 0, 1, 1613 ,
13
10 , . . . The sequence appears to monotonically approach 4

3 . We
can prove that this is the case as follows:

First, notice that for all x < 4
3 , we have f(x) < 4

3 . Hence L ≤ 4
3 .

Next, as a lemma, we prove that for any ε > 0, f
(
4
3 − ε

)
> 4

3 −
ε
3 :

f

(
4

3
− ε
)

=
1

1− 3
16 ·

4
3 + 3ε

16

=
1

3
4 + 3ε

16

=
4

3
−

3ε
16

3
4

(
3
4 + 3ε

16

) =
4

3
− ε

3 + 3ε
4

>
4

3
− ε

3
.

In the second line we used the equation 1
a+b = 1

a −
b

a(a+b) . Then by induction on n, starting from x = 0 =
4
3 −

4
3 , we have that fn(0) ≥ 4

3 −
4

3n+1 .
Now suppose L < 4

3 . Then there is some n large enough that fn(0) ≥ 4
3 −

4
3n+1 > L, so L is not an upper

bound for the sequence. Hence L = 4/3 is the smallest upper bound.
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Problem 8. Define n%d as the remainder when n is divided by d, i.e. n%d is the number r with n = qd+r
such that 0 ≤ r < |d|. What is the smallest positive integer n, not divisible by 5, 7, 11, or 13, for which
n2 % 5 < n2 % 7 < n2 % 11 < n2 % 13?

Solution 8. 19 . First, examine the possible values for n2 % 5 and n2 % 7: they are {1, 4} and {1, 2, 4},
respectively. Since n2 % 5 < n2 % 7, we must have n2 % 5 = 1, so n% 5 = ±1. Therefore only numbers of the
form n = 5k ± 1 need be considered.

The first few numbers of the form 5k±1 that are not divisible by 7, 11, or 13 are 1, 4, 6, 9, 16, 19. Squaring
each and reducing modulo 7 yields the sequence 1, 2, 1, 4, 4, 4. We only need to consider the numbers yielding
more than 1, namely, 4, 9, 16, 19. Squaring these and reducing modulo 11 yields 5, 4, 3, 9; comparing to the
squares modulo 7, we see that we only need to consider 4 and 19. Finally, 42 % 13 = 3 < 5 = 42 % 11, so 4
does not work, but

192 % 5 = 1 < 192 % 7 = 4 < 192 % 11 = 9 < 192 % 13 = 10,

so we are done.

Problem 9. In quadrilateral ABCD, AB = DB and AD = BC. If m∠ABD = 36◦ and m∠BCD = 54◦,
find m∠ADC in degrees.

Solution 9. Let x = m∠ADC. Note that triangle ABD is isosceles with base angle 72. Applying the

law of sines to triangle BCD gives sin(x−72)
BC = sin 54

BD , and applying the law of sines to triangle ABD gives
sin 72
BD = sin 36

AD . Rearranging these two equations and using AD = BC, we can find sin(x− 72) = sin 36 sin 54
sin 72 =

sin 36 cos 36
sin 72 . By the double angle formula for sine, this equals 1/2, so x − 72 = 30 or 150. But x − 72 <

180− 54 = 126 because of the triangle BCD, so x− 72 = 30 and therefore x = 102 .

Problem 10. For a positive integer n, let p(n) be the number of prime divisors of n, counted with multiplicity,
so for example, p(3) = 1, p(4) = p(6) = 2. Now define the sequence a0, a1, a2, . . . by a0 = 2, and for n ≥ 0,
an+1 = 8p(an) + 2. Compute

∞∑
n=0

an
2n
.

Solution 10. We have a0 = 2, a1 = 10, a2 = 66, a3 = 514, and a4 = 66 again, so the sequence becomes
periodic with period 2. It follows that a2n = 66 and a2n+1 = 514 for each n ≥ 1, so

∞∑
n=0

an
2n

=
2

1
+

10

2
+
∞∑
n=1

(
66

22n
+

514

22n+1

)

= 7 +
323

4

∞∑
n=0

1

4n

= 7 +
323/4

1− 4−1

=
344

3
.

Problem 11. Let a, b ∈ [0, 1], c ∈ [−1, 1] be chosen independently and uniformly at random. What is the
probability that p(x) = ax2 + bx+ c has a root in [0, 1]?

Solution 11. Ignoring cases where a = 0 or b = 0 (since these have probability 0), a and b are positive, hence
p(x) is strictly increasing on [0, 1]. Then p(x) has a root in [0, 1] exactly when both p(0) ≤ 0 and p(1) ≥ 0.
This is equivalent to c ≤ 0 and a + b + c ≥ 0. Combining these with our given constraints gives a solid of
volume 5/6 (this solid looks like a cube of side length 1 with a tetrahedron cut out), but the solid containing

all (a, b, c) satisfying the given conditions has volume 2, so our probability is (5/6)/2 = 5/12 .
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Problem 12. Let a be a positive real number, and let C be the cube with vertices (±a,±a,±a) and T be the
tetrahedron with vertices (2a, 2a, 2a), (2a,−2a,−2a), (−2a, 2a,−2a), (−2a,−2a, 2a). The intersection of C
and T has volume ka3 for some positive real k. What is k?

Solution 12. Note that the triangle T1 with vertices (2a,−2a,−2a), (−2a, 2a,−2a), (−2a,−2a, 2a) lies in the
plane x+ y+ z = −2a, which intersects C at the triangle with vertices (0,−a,−a), (−a, 0,−a), (−a,−a, 0).
Thus when we intersect C with T , since this triangle lies in T1, T1 cuts off from C the tetrahedron with

vertices (−a,−a,−a), (0,−a,−a), (−a, 0,−a), (−a,−a, 0), which has volume a3

6 . By symmetry, each other

triangular face of T also cuts off a tetrahedron of volume a3

6 , so since the volume of C is 8a3, the volume of

C ∩ T is 8a3 − 4(a
3

6 ) = 22
3 a

3. This gives k = 22/3 .

Problem 13. A sequence of numbers a1, a2, . . . , am is a geometric sequence modulo n of length m (for some
positive integers n and m) if for each index i with 1 ≤ i ≤ m we have ai ∈ {0, 1, 2, . . . , n − 1} and there is
some integer k such that n divides (aj+1 − kaj) for j = 1, 2, . . . ,m− 1.

How many geometric sequences modulo 14 of length 14 are there?

Solution 13. Any geometric sequence modulo n is determined by a1 and k, since for j ≥ 2, aj must be the
unique number in {0, 1, 2, . . . , n− 1} such that n divides (aj − kj−1a1).

Now a1 and a2 determine a3, as follows. Suppose k and k′ are such that n divides (a2 − ka1) and
(a2 − k′a1). Then n divides (k − k′)a1, hence n

gcd(a1,n)
divides (k − k′). Also, gcd(a1, n) divides a2 because

a2 = ka1 +mn for some integer m, so n divides (k− k′)a2. Thus if n divides both (a3− ka2) and (a′3− k′a2)
for some a3, a

′
3 ∈ {0, 1, 2, . . . , n− 1}, then n divides (a3 − a′3), so a3 = a′3.

Similarly, a2 and a3 determine a4, etc., so the whole sequence is determined by a1 and a2. Then to solve
the problem, it suffices to count the number of pairs a1, a2 ∈ {0, 1, 2, . . . , 13} such that for some integer k,
14 divides (a2 − ka1).

For any a1 ∈ {0, 1, 2, . . . , 13}, there are 14
gcd(a1,14)

possible values for a2, since we can take k = 0, 1, 2, . . . ,

but by the above argument, the corresponding values for a2 start repeating at k = 14
gcd(a1,14)

. Splitting up

the possible values of a1 into cases depending on the value of gcd(a1, 14) = 1, 2, 7, 14, we see that there are

6 · 14 + 6 · 7 + 1 · 2 + 1 · 1 = 129

possible pairs a1, a2, hence 129 possible sequences.
We can speed up this last computation by recalling that the function

f(n) =
∑
d|n

ϕ(d) · d

is multiplicative, where ϕ is Euler’s totient function, and noting that the answer is f(14) = f(2)f(7) =
(1 + 1 · 2)(1 + 6 · 7) = 3 · 43 = 129.
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Problem 14. Let circle O be a unit circle with five points, A, B, C, D, and E, spaced equidistantly along
the circumference of the circle. For each of the points, there is an arc inside circle O with center at that
point and beginning and ending at the two adjacent points (e.g., for point A, there is an arc of center A
beginning at E and ending at B). The arcs intersect each other at points A′, B′, C ′, D′, and E′, as shown
in the diagram. Find X, the length of AC ′. You may leave your answer in the form f(x), where f is a
trigonometric function and x is in simplest form.

Solution 14. Because AB′, CB′, AB, and CB are all radii of the arcs centered at A or C, their lengths are
equal. Therefore, triangles AB′C and ABC are congruent. Since ABCDE is a regular pentagon, m∠ABC =
108, so by congruency, m∠AB′C = 108. Since A′B′C ′D′E′ is a regular pentagon, m∠A′B′C ′ = 108 as well.
Then m∠CB′A = m∠C ′B′A′, so by symmetry, we know that A′ is on CB′ and C ′ is on AB′ .

Now triangle OB′C ′ is isosceles with m∠OC ′B′ = m∠OB′C ′ = (1/2)m∠A′B′C ′ = 54, so m∠AC ′O =
126. Also, m∠AOC ′ = (1/2)m∠AOE = 36. Then using the law of sines in triangle AOC ′,

X

sin(36)
=

1

sin(126)
=

1

sin(54)
=

1

cos(36)
.

Then X = sin(36)
cos(36) = tan(36◦) .

Problem 15. How many pairs of nonintersecting closed rectangles are there in a 5 by 5 grid? (By “closed”,
we mean the rectangles include their boundaries, so for example, the pair on the right intersects, while the
pair on the left does not).

Solution 15. Each rectangle is of the form [a, b] × [c, d] for some integers 0 ≤ a, b, c, d ≤ 5 with a < b and
c < d. The condition that [a1, b1]× [c1, d1] and [a2, b2]× [c2, d2] do not intersect is equivalent to the condition
that either their horizontal components [a1, b1] and [a2, b2] do not intersect, or their vertical components
[c1, d1] and [c2, d2] do not intersect. The former means that either b1 < a2 or b2 < a1, and similarly, the
latter means that either d1 < c2 or d2 < c1.
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The number of pairs whose horizontal components do not intersect is
(
6
4

)(
6
2

)2
= 3375, since without loss

of generality b1 < a2 (because the pair is unordered), which gives a1 < b1 < a2 < b2, so there are
(
6
4

)
choices

of [a1, b1], [a2, b2], and we must have c1 < d1 and c2 < d2, so there are
(
6
2

)
choices of each [ci, di]. By the

same argument, there are 3375 pairs whose vertical components do not intersect.
We have double-counted the pairs for which the both the horizontal components and vertical components

do not intersect – we have without loss of generality that b1 < a2, so if d1 < c2, then there are
(
6
4

)
choices

of [a1, b1], [a2, b2] and
(
6
4

)
choices of [c1, d1], [c2, d2], so we have

(
6
4

)2
= 225 pairs, and similarly there are 225

pairs with d2 < c1, giving a total of 450 pairs.
Thus the desired number of pairs is 3375 + 3375− 450 = 6300 .
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