CHMMC 2015 Tiebreaker Problems

November 22, 2015

Problem 0.1. Call a positive integer x-cube-invariant if the last n digits of x are equal to the last n digits of x^{3}. For example, 1 is n-cube invariant for any integer n. How many 2015-cube-invariant numbers x are there such that $x<10^{2015}$?

Problem 0.2. Let $a_{1}=1, a_{2}=1$, and for $n \geq 2$, let

$$
a_{n+1}=\frac{1}{n} a_{n}+a_{n-1}
$$

What is a_{12} ?
Problem 0.3. Define an n-digit pair cycle to be a number with $n^{2}+1$ digits between 1 and n with every possible pair of consecutive digits. For instance, 11221 is a 2-digit pair cycle since it contains the consecutive digits 11, 12, 22, and 21. How many 3-digit pair cycles exist?

Problem 0.4. The following number is the product of the divisors of n.

$$
46,656,000,000
$$

What is n ?

