
CHMMC 2015 Power Round Problems

In this problem, we will explore the probabilistic method, a tool for proving things about
deterministic structures by introducing artificial randomness.

1 Probability

Definition 1.1. A counting random variable X is an object that samples some random pro-
cess and then returns a positive integer value. We use the symbols Pr(X = n) to denote the
probability that X will return n when sampled.

Definition 1.2. The expected value of a counting random variable X is the average of its
outcomes weighted by their probabilities. We denote this by EX, and we can define it by the
equation

EX =
∑
n∈N

n · Pr(X = n)

Example 1.1. The outcome of a 6-sided die roll is a counting random variable D. It takes on
values between 1 and 6. For each n in the range 1 ≤ n ≤ 6, we have Pr(D = n) = 1

6 . The
expected value of D is: ED = 1 · 1

6 + 2 · 1
6 + 3 · 1

6 + 4 · 1
6 + 5 · 1

6 + 6 · 1
6 = 7
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Problem 1.1. The sum of two independent 6-sided dice rolls is a discrete random variable D2

with outcomes in the range 2 ≤ n ≤ 12. What is the expected value of D2?

Problem 1.2 (Linearity of expectation). Let X and Y be counting random variables. Define
X + Y to be the result of sampling X, sampling Y , and then summing the results. We can find
the probability that X + Y has a certain value with the following formula:

Pr(X + Y = n) =
∑
k≤n

Pr(X = k and Y = n− k)

Prove that the expected value of X + Y is the sum of the expected values of X and Y .

Problem 1.3. Using linearity of expectation, compute the expected value of the outcome of
rolling ten 6-sided dice.

2 Tournaments without Clear Winners

Suppose n people play a large chess tournament. Each participant plays a match against each
other participant, and each match has a winner and a loser. Now suppose we pick k participants
and ask them “was there any single participant that won against all k of you?” Is it possible that
the answer is always yes, regardless of which k participants we pick? If so, we call the outcome
of the tournament k-good. (By outcome of the tournament, we mean the list of outcomes of all
of the individual games.)

Problem 2.1. Show that, for any n > k > 0, there is an outcome of a tournament with n
participants which is not k-good.
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Problem 2.2. Suppose n = 3 and k = 1. Explicitly describe a 1-good outcome of a tournament
with 3 participants.

Now, we suppose that we construct a random tournament outcome by deciding each game
with a fair coin flip.

Problem 2.3. Pick some set of k people. Let Pn,k be the probability that no participant won
against all k of them in our random tournament outcome. Calculate Pn,k.

Problem 2.4. Prove that if
(
n
k

)
Pn,k < 1, the probability that our random tournament outcome

is k-good is nonzero. Use the following fact: Pr(A or B) ≤ Pr(A) + Pr(B).

Problem 2.5. Conclude that if
(
n
k

)
Pn,k < 1, then there is a k-good outcome for a tournament

with n participants. (Hint: In problem 2.4, we gave a coin-flipping construction that yields a
k-good tournament. Remove the randomness by picking the optimal sequence of coin flips.)

Now we have a sufficient condition on n and k for there to exist a k-good tournament with n
participants. Now we ask: are there k-good tournaments for every k?

Problem 2.6. Prove that, for any fixed k, there is sufficiently large n such that a k-good
tournament with n participants exists. (Hint: Fix k, and then prove that

(
n
k

)
Pn,k < 1 has a

solution for n.)

3 Covering Dots with Coins

Consider the following game: An adversary places n dots on a piece of paper. You place n coins
of equal size on the paper. You win if every dot is covered by a coin.

(More formally: The adversary places n points on the plane. Next, you place n nonoverlapping
unit disks on the plane. They may touch on the boundary but not in the interior. You win if
every )

Problem 3.1. Prove, using elementary methods, that it is always possible to win if n = 3.

We will use the probabilistic method to prove that it is possible to win when n = 10.

Problem 3.2.

Suppose we have infinitely many disks and want to cover the
whole plane. We do this in the most efficient way we know of:
we tile the plane with regular hexagons of side length 2, and
put a disk of unit radius at each vertex and at each hexagon’s
center. What fraction of each hexagon is covered by the disks?

Problem 3.3. Consider the following random process.
There are 10 points in the plane. You lay down an infinite hexagonal tiling of side length 2

with a hexagon centered at the origin. Next, you pick a point P uniformly at random inside the
hexagon at the origin. You translate the whole hexagonal grid so that the center of the original
hexagon is at point P . Finally, you use this hexagonal grid to lay down infinitely many circles
as in problem 3.2.

Calculate the expected value of the number of points covered by your disks. Justify your
answer. (Hint: Make a counting random variable and use linearity of expectation.)

Now recall the game laid out at the beginning of the problem.

Problem 3.4. Given that the expected value in 3.3 is strictly greater than 9, argue that it is
always possible to place down just 10 disks in order to cover all 10 of the adversary’s points.
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