Tiebreaker Round Solutions

2014 CHMMC

Solution 1.

Solution 2. We have $y=b(a+d)$ and $z=c(a+d)$, so $b=y /(a+d)$ and $c=z /(a+d)$. Thus b and c are entirely determined by a and d. Plugging these in gives $a^{2}+b c=a^{2}+y z(a+d)^{2}$ and $d^{2}+b c=d^{2}+y z(a+d)^{2}$. The equations $a^{2}+y z(a+d)^{2}=x$ and $d^{2}+y z(a+d)^{2}=w$ clearly have two roots with respect to a and d since $x, w \neq 0$. Therefore given a valid a, there are two possible values of d, and given a valid d there are two possible values of a. This gives a total of 4 possibilities. Alternatively, use diagonalization; by solving the roots of the characteristic polynomial we get $\lambda=3 \pm \sqrt{7}$:

$$
\left[\begin{array}{ll}
2 & 2 \\
3 & 4
\end{array}\right]=P\left[\begin{array}{cc}
3+\sqrt{7} & 0 \\
0 & 3-\sqrt{7}
\end{array}\right] P^{-1}
$$

which must give the roots

$$
\left[\begin{array}{ll}
2 & 2 \\
3 & 4
\end{array}\right]=P\left[\begin{array}{cc}
\pm \sqrt{3+\sqrt{7}} & 0 \\
0 & \pm \sqrt{3-\sqrt{7}}
\end{array}\right] P^{-1}
$$

where the \pm are independent. This again gives 4 possibilities.
Solution 3. If you're not in one of these positions, you can move to one of them: $1,3,6$ removes 1 bean, 4 removes 4 beans and 7 removes 7 beans.

If you are in one of these positions, you can't move to one of them: $0 \mapsto\{6,4,1\} ; 2 \mapsto\{1,6,3\} ; 5 \mapsto\{4,1,6\}$
The winning strategy for this game is to always move to $n \equiv 0,2,5(\bmod 8)$ if possible, so player 2 wins whenever $n \equiv 0,2,5(\bmod 8)$. There are 14 numbers between 2014 and 2050 satisfying this.
Solution 4. $f(n, 0,0)=n^{2}$.
The second coordinate keeps a running total of the sum of the various values of the third coordinate as the first coordinate goes to 0 . In other words, $f(n, 0,0)=\sum_{i=1}^{n}(2 i-1)=n^{2}$
Solution 5. Let the expression be x. Take the natural log to give
and the sum reduces to

$$
\ln x=\sum_{n=1}^{\infty} \frac{n}{3^{n}} \ln 3
$$

$$
\begin{gathered}
\ln x=\frac{1}{3} \ln 3(3 / 2)^{2} \\
x=3^{3 / 4}
\end{gathered}
$$

