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1. We have that the convolution is n+ n/2 + n/4 + . . . n/2k1 , or (2k1 − 1)3k25k3 . . ..

2. a. To derive commutativity, substitute d = n/k, k = n/d. To derive associativity, notice

(f ∗ (g ∗ h))(n) =
∑
k|n

f(k)
∑

d|(n/k)

g(d)h(n/kd)


(f ∗ (g ∗ h))(n) =

∑
{k1,k2,k3}:n=k1k2k3

f(k1)g(k2)h(k3)

which does not depend on order we computed the convolution in.

b. Using the sum, we see that all terms drop except the ε(1)f(n) term, leaving f(n). To see that no other function
has this property, suppose for the sake of contradiction that g is another identity. Then for some n, (g ∗ f)(n)
includes a nonzero term proportional to f(k 6= n). Since f(k) can be whatever we like, this will not be f(n) in
general.

c. To see that an inverse exists, we notice that expanding and rewriting (g ∗ g−1)(1) = 1 gives g−1(1) = 1/g(1).
Rewriting (g ∗ g−1)(p) = p for any prime gives g−1(p) = −g(p)/g(1)2 at that prime. Similarly, evaluating g ∗ g−1
at any product of primes and then rewriting gives the value of g−1 of that product, and so forth. In general, if
the sum of the exponents in n’s factorization is m, we can express g−1(n) in terms of terms depending only on
g−1(n′) and g(n′) where each n′’s factorization has a sum of exponents of at most m−1. Thus we can inductively
(or recursively) determine g−1.

To see that it is unique, suppose f has two inverses g1 and g2. Then we have that f ∗ g1 ∗ g2 = g2, but by
associativity and commutativity it is also f ∗ g2 ∗ g1 = g1. Therefore g1 and g2 are the same, so the inverse is
unique.

3. a. Simple computation gives µ(1) = 1, µ(p) = −1, µ(p2) = 0, µ(p1p2) = 1.

b. The correct formula is µ(p1p2 . . . p`) = (−1)`. The base cases µ(1) = 1, µ(p) = −1 are already proven. The
factors of p1p2 . . . p`+1 can be separated into two types: those that have p`+1 as a factor, and those that don’t.
Therefore,

0 =
∑

k|p1...p`

µ(k) +
∑

k|p1...p`

µ(kp`+1)

We know by the definition of µ that the first sum is 0. Using the binomial theorem and the inductive hypothesis,
we get

0 =
`+1∑
r=1

(
`− 1

r − 1

)
(−1)r + µ(p1 . . . p`+1)− (−1)`+1

0 = −
∑̀
r=0

(
`

r

)
(−1)r + µ(p1, . . . p`+1)− (−1)`+1

0 = −(1− 1)` + µ(p1 . . . p`+1)− (−1)`+1

Hence µ(p1 . . . p`+1) = (−1)`+1.

c. Following the hint, we let m contain all the prime factors of n but repeated only once. Then we have that

0 =
∑
k|n

µ(k)
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0 =
∑
k|m

µ(k) +
∑

k|n:p2
i |k

µ(k)

where the second sum is over all k which divide n and have a square divisor. We know the first sum to be 0,
leaving

0 =
∑

k|n:p2
i |k

µ(k)

Since all k in this sum contain a repeated prime factor, and this holds regardless of which combination we choose,
we must have that µ(k) = 0 for all these k. Since n is in this sum, µ(n) = 0. Another way to think of this is that
letting every term be 0 works, and the uniqueness of µ means that this is the only possibility.

This simply gives

µ(n) =

{
(−1)` n is the product of ` distinct primes

0 n has a repeated prime factor

d. We have that 1 ∗ f = n2, so convolving by µ gives f = µ ∗ n2. Thus,

f(2434) =
∑

k|2434
k2µ(2434/k)

Since the only factors of 2434 with µ 6= 0 are 1, 2, 3, 6, this gives

f(2434) = 2838 − 2638 − 2836 + 2636

f(2434) = 2937

4. a. Since the elements of Us have f(1) 6= 1 except for f = ε, it is disjoint from Um and Ua excluding ε. If a function
f from Um is in Ua, then since f(pk1

1 p
k2
2 . . . pkl

l ) = f(pk1
1 ) . . . f(pkl

l ), we have f(n) = 0 for all n > 1; thus, f is the
identity. Therefore all three sets are disjoint excluding ε.

b. Define g(pk1
1 . . . pkl

l ) =
∏k

i=1 f(pki ). Then clearly g(mn) = g(m)g(n) for relatively prime m,n, and g(1) = 1
since an empty product is 1. Therefore g ∈ Um. Now consider h = g−1 ∗ f . We get g−1(1) = 1, so h(1) = 1.

Furthermore, for any k and prime p, (g−1∗f)(pk) =
∑k

i=0 g
−1(pi)f(pk−i) =

∑k
i=0 g

−1(pi)g(pk−i) by the definition
of g and g−1. However, this is just (g−1 ∗ g)(pk) = 0 by the property of inverses. Therefore f = g ∗ h is the
convolution of a multiplicative and an anti-multiplicative function.

c. Any function f in U is just a scalar times some function h in U that satisfies h(1) = 1, and a scalar times h, say
rh, is just h ∗ rε. If we let r = f(1) and gs = rε, we get that g−1s ∗ f = h is in U and (g−1s ∗ f)(1) = h(1) = 1, so
by the previous part, we can write g−1s ∗ f = gm ∗ ga. Then f = gs ∗ gm ∗ ga.

d. As before, define G(pk1
1 . . . pk`

l ) =
∏k

i=1 F (pki ). Clearly F (2k) = 2 and F (pk) = 1 for any other prime p. Then
G(n) is just 2 if n is divisible by 2, and 1 otherwise; in other words, G(n) = gcd(2, n). Now look at the third
case for F . If n is not divisible by 2, this is just the number of pairs of prime factors of n, which suggests that
H may be 1 for any number which is the product of two distinct prime factors. Trying this out reveals that it
works; F = gcd(2, n) ∗H where

H(n) =

{
1 if n = 1 or n is the product of two distinct primes

0 otherwise
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