Mixer Round Answers

Fall 2014 CHMMC

1. 0.83 ; calculator; $[0.7 ; 1]$
2. 13.4 L ; current market rate; $[6.7 ; 26.8]$
3. about 400 billion; NPR; [200 billion; 800 billion]
4. 45,086,079; Mathematica; [20 million; 100 million]
5. 45,060; Wikipedia List of spaceflight records; [22,500; 90,000]
6. 130 billion; Wikipedia; [65 billion; 260 billion]
7. 31,000; "How much time do Americans spend eating?." The Free Library. 2008 Frozen Food Digest, Inc. 10 Nov. 2014; [15,500; 62,000]
8. Not known exactly; my inbox; [400; 800]
9. Solving $\frac{421+b}{421} \frac{b-1}{b}<1$ gives $b<\frac{1+\sqrt{1685}}{2}$, so $b<20.99$. Therefore he should sell when $b=20$, or $k=345$.
10. $45-6=39$
11. player 1 loses
12. $8 / 7$ Let $2 y=x$, so we are trying to find the max of

By the AM-GM inequality, we know

$$
y^{n}=\sqrt[2 n+1]{1 * y * y^{2} * \ldots y^{2 n}} \leq \frac{1+y+\ldots y^{2 n}}{2 n+1}
$$

with equality iff $1=y=\cdots=y^{2 n}=1$. Thus the function maximizes at $y=1$, giving $\frac{2^{n}}{2 n+1}$.
13. $2 / 3$ Telescoping, we see that

$$
a_{n}=a_{1}-\frac{z}{1}+\frac{z}{2}+\frac{z}{n}-\frac{z}{n+1}
$$

Therefore, $a_{n}=\frac{z(n+1)-z n}{n(n+1)}=\frac{z}{n(n+1)}$ so $a_{y}=\frac{z}{y(y+1)}$.

