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Problem 1. For a1, . . . a5 ∈ R,
a1

k2 + 1
+ . . .+

a5
k2 + 5

=
1

k2

for all k ∈ {2, 3, 4, 5, 6}. Calculate
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Problem 2. A matrix

[
x y
z w

]
has square root

[
a b
c d

]
if
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]2
=
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a2 + bc ab+ bd
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]
=

[
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z w

]

Determine how many square roots the matrix

[
2 2
3 4

]
has (complex coefficients are allowed).

Problem 3. Two players play a game on a pile of n beans. On each playerś turn, they may take exactly 1, 4, or 7
beans from the pile. One player goes first, and then the players alternate until somebody wins. A player wins when
they take the last bean from the pile. For how many n between 2014 and 2050 (inclusive) does the second player
win?

Problem 4. If f(i, j, k) = f(i− 1, j + k, 2i− 1) and f(0, j, k) = j + k, evaluate f(n, 0, 0).

Problem 5. Determine the value of
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