Tiebreaker Round

2014 CHMMC

Problem 1. For $a_{1}, \ldots a_{5} \in \mathbb{R}$,

$$
\frac{a_{1}}{k^{2}+1}+\ldots+\frac{a_{5}}{k^{2}+5}=\frac{1}{k^{2}}
$$

for all $k \in\{2,3,4,5,6\}$. Calculate

$$
\frac{a_{1}}{2}+\ldots+\frac{a_{5}}{6}
$$

Problem 2. A matrix $\left[\begin{array}{cc}x & y \\ z & w\end{array}\right]$ has square root $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ if

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{2}=\left[\begin{array}{ll}
a^{2}+b c & a b+b d \\
a c+c d & b c+d^{2}
\end{array}\right]=\left[\begin{array}{ll}
x & y \\
z & w
\end{array}\right]
$$

Determine how many square roots the matrix $\left[\begin{array}{ll}2 & 2 \\ 3 & 4\end{array}\right]$ has (complex coefficients are allowed).
Problem 3. Two players play a game on a pile of n beans. On each playerś turn, they may take exactly 1,4, or 7 beans from the pile. One player goes first, and then the players alternate until somebody wins. A player wins when they take the last bean from the pile. For how many n between 2014 and 2050 (inclusive) does the second player win?

Problem 4. If $f(i, j, k)=f(i-1, j+k, 2 i-1)$ and $f(0, j, k)=j+k$, evaluate $f(n, 0,0)$.
Problem 5. Determine the value of

$$
\prod_{n=1}^{\infty} 3^{n / 3^{n}}=\sqrt[3]{3} \sqrt[3^{2}]{3^{2}} \sqrt[3]{3^{3}} \cdots
$$

