Power Round

Caltech-Harvey Mudd Math Competition

Fall 2014

In this problem, we will derive various properties of Dirichlet Convolutions, a powerful tool in number theory. Consider two real functions f and g whose domain is the positive integers. Then their convolution is a new function:

$$
(f * g)(n)=\sum_{k \mid n} f(k) g(n / k)
$$

In other words, the convolution of f and g at n is the sum of $f(k) g(n / k)$ over all positive divisors k of n.

1. To begin to understand the Dirichlet convolution, let

$$
\begin{gathered}
A(n)= \begin{cases}1 & n=2^{k} \text { for some integer } \mathrm{k} \\
0 & \text { otherwise }\end{cases} \\
\quad B(n)=n
\end{gathered}
$$

and find a simple formula for the convolution $(A * B)(n)$ in terms of n 's prime factorization $2^{k_{1}} 3^{k_{2}} 5^{k_{3}} \cdots$.. (10 pts)
2. a. Prove that Dirichlet convolutions are

- commutative $(f * g=g * f)$, and
- associative $(f *(g * h)=(f * g) * h)$.
(10 pts)
b. Show that the function

$$
\epsilon(n)= \begin{cases}1 & n=1 \\ 0 & n \neq 1\end{cases}
$$

is the identity; that $(\epsilon * f)(n)=f(n)$, and that no other function has this property. (5 pts)
c. A function f^{-1} is an inverse to a function f if $\left(f * f^{-1}\right)(n)=\epsilon(n)$. Give

- An argument that inverses exist by describing a process for computing the inverse of a given function. A full inductive definition of the inverse is not required.
- A proof that the inverse is unique.
(10 pts)

Note that these first parts have proven that the set of these real-valued functions f on the positive integers with $f(1) \neq 0$ are a commutative group under Dirichlet inversion. Let this set of functions be U.
3. Next we would like try inverting the function $\mathbf{1}(n)=1$. Its inverse is called the Möbius function μ; that is, the function μ such that $\sum_{k \mid n} \mu(k) \mathbf{1}(n / k)=\epsilon(n)$.
a. Find $\mu(n)$ in the special cases that

- $n=1$.
- $n=p$ is prime.
- $n=p^{2}$ is the square of a prime.
- $n=p_{1} p_{2}$ is the product of 2 primes.
(8 pts)
b. Use induction to find $\mu\left(p_{1} p_{2} \ldots p_{\ell}\right)$ where $p_{1} p_{2} \ldots p_{\ell}$ is the product of ℓ distinct prime factors. Hint: try to see a pattern in your results for $1, p$, and $p_{1} p_{2}$ in the previous part. (8 pts)
c. Determine $\mu(n)$ where n 's prime factorization contains at least one repeated prime factor, then summarize your results from this and the previous part in one expression (with multiple cases) for μ. Hint: divide the factors of n into two cases: those that have repeated prime factors and those that do not. (8 pts)
d. There exists a function f such that $\sum_{k \mid n} f(k)=n^{2}$ for all positive integers n. Using what you know about Dirichlet convolutions and μ, find $f\left(2^{4} 3^{4}\right)$. Your answer can be a prime factorization. (6 pts)

4. Next, we would like to understand the structure of the elements of U. Consider the following subsets of U :

- U_{s} (s for scalar), whose elements satisfy
for some constant r.
- U_{m} (m for multiplicative), whose elements satisfy $f(1)=1$ and $f(m n)=f(m) f(n)$ for any relatively prime numbers m, n.
- U_{a} (a for anti-multiplicative), whose elements satisfy $f(1)=1$ and $f\left(p^{k}\right)=0$ for any prime p and integer $k \geq 1$
a. Show that these three sets of functions are pairwise disjoint (no two have common elements) except for the identity function ϵ. (2 pts)
b. Show that any function f in U with $f(1)=1$ can be expressed as the convolution of a function in U_{m} and a function in U_{a}. Hint: Using f, construct a multiplicative function g such that $h=g^{-1} * f$ is anti-multiplicative. (10 pts)
c. Using the previous result, show that any function f in U can be expressed as $g_{s} * g_{m} * g_{a}$ where g_{s} is in U_{s}, g_{m} is in U_{m}, and g_{a} is in $U_{a} .(3 \mathrm{pts})$
d. Suppose the prime factorization of n is $p_{1}^{k_{1}} p_{2}^{k_{2}} \ldots p_{\ell}^{k_{\ell}}$ where each $k_{i} \geq 1$. Also let the exponent for 2 in n 's factorization be k. Define the function $F(n)$ such that

$$
F(n)= \begin{cases}\ell(\ell-1)+2 & k \geq 2 \\ (\ell-1)^{2}+2 & k=1 \\ \frac{\ell(\ell-1)}{2}+1 & k=0\end{cases}
$$

Determine a multiplicative function G in U_{m} and anti-multiplicative function H in U_{a} such that $G * H=F$. (10 pts)

