
Fall 2012 Caltech-Harvey Mudd Math Competition

November 17, 2012

Power Round

In this round you will prove an identity from both algebraic and combinatorial perspectives. For
this part of the contest, you must fully justify all your answers unless otherwise specified. In your
solutions, you may refer to the answers of earlier problems (but not later problems or later parts
of the same problem), even if you were not able to solve those problems.
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PR2. (a) A combinatorial proof is one that count the same value in two ways. For instance, here
is a combinatorial proof that 1/2 + 1/4 + 1/8 + 1/16 + . . . = 1:

Consider someone flipping a coin infinitely many times. There is a probability of 1 that
a tails shows up in this sequence of flips. Consider the various possible cases of this;
the probability that the first tails happens at the nth toss. The chance that it happens
at the first toss is 1/2. The chance that it happens at the second toss is 1/4, since we
must start with the sequence HT where H represents a heads and T represents a tails.
Similarly, the chance that the 3rd toss is the first tails is 1/8, and so on. Adding up
these possibilities, we get that a total chance of 1/2+1/4+1/8+1/16+ . . . that a tails
occurs eventually. Therefore, 1/2 + 1/4 + 1/8 + 1/16 + . . . = 1.
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(b) Given that, for any non-negative integer n, we have that the sum, for all possible
combinations of distinct positive integers k1, k2, . . . kn,
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Provide a combinatorial proof that
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