Caltech Harvey Mudd Mathematics Competition

Writer: Yasha Berchenko-Kogan

1. The monic polynomial f has rational coefficients and is irreducible over the rational numbers. If $f(\sqrt{5}+\sqrt{2})=0$, compute $f(f(\sqrt{5}-\sqrt{2}))$. (A polynomial is monic if its leading coefficient is 1 . A polynomial is irreducible over the rational numbers if it cannot be expressed as a product of two polynomials with rational coefficients of positive degree. For example, $x^{2}-2$ is irreducible, but $x^{2}-1=(x+1)(x-1)$ is not.)
Solution: Let $x=\sqrt{5}+\sqrt{2}$. Then $x^{2}=5+2+2 \sqrt{10}$, so $\left(x^{2}-7\right)^{2}-40=0$. Thus $f(x)=\left(x^{2}-7\right)^{2}-40$ is a monic polynomial such that $f(\sqrt{5}+\sqrt{2})=0$. One can notice that if $y=\sqrt{5}-\sqrt{2}$, then $y^{2}=7-2 \sqrt{10}$, so $0=\left(y^{2}-7\right)^{2}-40=f(y)$. Thus $f(\sqrt{5}-\sqrt{2})=0$, and so $f(f(\sqrt{5}-\sqrt{2}))=f(0)=\left(0^{2}-7\right)^{2}-40=9$.
There are a several ways to check that f is irreducible. If we could factor f as a product of polynomials of positive degree with rational coefficients, then one of the factors would be a linear or quadratic polynomial. We can notice that the four roots of f are $\sqrt{5}+\sqrt{2}, \sqrt{5}-\sqrt{2},-\sqrt{5}+\sqrt{2}$, and $-\sqrt{5}-\sqrt{2}$. Each of these roots is irrational, so it can't be the root of a linear polynomial with rational coefficients. It is also not hard to check that none of these roots are roots of a quadratic polynomial with rational coefficients, so we get a contradiction.
2. In the following diagram, points E, F, G, H, I, and J lie on a circle. The triangle $A B C$ has side lengths $A B=6, B C=7$, and $C A=9$. The three chords have lengths $E F=12, G H=15$, and $I J=16$. Compute $6 \cdot A E+7 \cdot B G+9 \cdot C I$.

Solution: We use the Power of a Point Theorem three times at A, B, and C to obtain the equations $A E \cdot A F=A I \cdot A J, B G \cdot B H=B E \cdot B F$, and $C I \cdot C J=C G \cdot C H$. Since we know the lengths of the chords, we can rewrite these equations just in terms of $A E, B G$, and $C I$:

$$
\begin{aligned}
A E(12-A E) & =(9+C I)(7-C I) \\
B G(15-B G) & =(6+A E)(6-A E) \\
C I(16-C I) & =(7+B G)(8-B G)
\end{aligned}
$$

Adding these three equations together and simplifying, we find that

$$
12 A E+15 B G+16 C I-(A E)^{2}-(B G)^{2}-(C I)^{2}=155-2 C I+B G-(A E)^{2}-(B G)^{2}-(C I)^{2}
$$

We conclude that $12 A E+14 B G+18 C I=155$, so $6 A E+7 B G+9 C I=\frac{155}{2}$.
3. Compute the number of ways of tiling the 2×10 grid below with the three tiles shown. There is an infinite supply of each tile, and rotating or reflecting the tiles is not allowed.

Solution: Call the three tiles a Γ-tile, an I-tile, and a J-tile, respectively. It is easy to see that each Γ-tile must be paired with a J-tile to create a 2×3 rectangle. Thus we'd like to tile a 2×10 rectangle with 2×3 rectangles and 2×1 rectangles. We can therefore reduce the problem to tiling a 1×10 rectangle with 1×3 rectangles and 1×1 squares.
We can compute the number of ways to tile this rectangle using recursion. Let T_{n} be the number of tiling a $1 \times n$ rectangle with 1×3 and 1×1 tiles. We can tile a $1 \times n$ rectangle by first placing either a 1×1 or a 1×3 tile on the left. If we place a 1×1 tile, then the number of ways of tiling the remaining $n-1$ squares is T_{n-1}. If we place a 1×3 tile, then the number of ways of tiling the remaining $n-3$ squares is T_{n-3}. Thus $T_{n}=T_{n-1}+T_{n-3}$. Using $T_{0}=T_{1}=T_{2}=1$, we can use this recursive formula to compute T_{n} :

n	0	1	2	3	4	5	6	7	8	9	10
T_{n}	1	1	1	2	3	4	6	9	13	19	28

Thus there are 28 ways of tiling the rectangle.
4. Compute the number of positive divisors of 2010 .

Solution: We can factor $2010=2 \cdot 3 \cdot 5 \cdot 67$. A divisor of 2010 is the product of a subset of $\{2,3,5,67\}$. There are $2^{4}=16$ such subsets, so 2010 has 16 divisors.

Page 2

