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1. (Yasha Berchenko-Kogan) A matrix M is called idempotent if M2 = M . Find an idempotent 2 × 2
matrix with distinct rational entries or write “none” if none exist.

Solution: Let M =
(

a b
c d

)
. Then M2 =

(
a2+bc b(a+d)

c(a+d) d2+bc

)
. We see that M is idempotent if and only if

the following four equations are satisfied:

a = a2 + bc b = b(a+ d) c = c(a+ d) d = d2 + bc

In particular, from the second and third equations we see that either a+ d = 1 or b = c = 0. Since the
problems asks for M to have distinct entries, we cannot have b = c = 0, so we must have a + d = 1.
We can write the first equation as bc = a − a2 = a(1 − a) = ad. Likewise, the fourth equation
is also equivalent to bc = d − d2 = d(1 − d) = ad. Therefore, we are looking for distinct rational
numbers a, b, c, d, such that bc = ad. One such example is

(
a b
c d

)
=
(

2 −1
6 −3

)
. Thus, the answer is

any matrix M =
(

a b
c d

)
with distinct rational entries that satisfies ad = bc and a+ d = 1.

2. (Brian Lawrence) The largest prime factor of 1994 +4 has four digits. Compute the second largest prime
factor.

Solution: We use the factoring trick x4 + 4y4 = (x2 + 2xy + 2y2)(x2 − 2xy + 2y2), so 1994 + 4 =
(1992+2·199+2)(1992−2·199+2) = ((199+1)2+1)((199−1)2+1) = 40001·39205. Since 40001 = 4·104+1,
we can use this factoring trick again to find that 40001 = (2 ·102 +2 ·10+1)(2 ·102−2 ·10+1) = 221 ·181.
Thus the 4-digit prime factor cannot divide 40001, so it must divide 39205 = 5 · 7841. We can check
that 7841 is not divisible by 2, 3, 5, or 7. We know that 7841 cannot be divisible by any larger number,
because then 39205 would not have a 4-digit prime factor. Thus 7841 must be the largest prime factor
of 1994 + 4. We check that 221 = 152− 22 = 17 · 13 and that 181 is prime. Thus the prime factorization
of 1994 + 4 is 5 · 13 · 17 · 181 · 7841, and so the second largest prime factor is 181 .

3. (Yasha Berchenko-Kogan) Assume that the earth is a perfect sphere. A plane flies between 30◦N 45◦W
and 30◦N 45◦E along the shortest possible route. Let θ be the northernmost latitude that the plane flies
over. Compute sin θ.

Solution: For simplicity, we can let the radius of the sphere be 1. If z is the vertical axis, we see that
the plane takes off and lands at z = sin 30◦ = 1

2 . Since the plane’s origin and destination are 90◦ of
longditude apart, we can choose coordinates so that the plane’s starting point is in the xz-plane and
destination is in the yz-plane. Since cos 30◦ =

√
3

2 , we see that the planes starts at
(√

3
2 , 0,

1
2

)
and flies

to
(

0,
√

3
2 ,

1
2

)
.

The shortest route between two points on a sphere is along a great circle. Any great circle is the
intersection of the sphere with a plane through the origin. There is a unique plane through (0, 0, 0),(√

3
2 , 0,

1
2

)
, and

(
0,
√

3
2 ,

1
2

)
. A quick computation will show that the equation of the plane is x+y+

√
3z =

0.

By symmetry, the northernmost point on the great circle will be when x = y. Thus we must solve the
equations 2x+

√
3z = 0 along with the equation of the sphere 1 = x2 + y2 + z2 = 2x2 + z2. Substituting

x = −
√

3
2 z, we see that 1 = 2 · 34z

2 + z2 = 5
2z

2. Notice that the z-coordinate of a point at a latitude of θ

is sin θ. Thus sin θ = z =
√

2
5 =

√
10
5

.

4. (Connor Ahlbach) Compute the number of integer solutions (x, y) to xy − 18x− 35y = 1890.

Solution: We use a factoring trick:

(x− 35)(y − 18) = xy − 18x− 35y + 35 · 18 = 1890 + 35 · 18 = 1890 + 630 = 2520

For each pair of integers (a, b) with ab = 2520, we can find an integer solution (x, y) by setting x = a+35
and y = b+ 18. Conversely, each integer solution (x, y) corresponds to a pair of divisors of 2520. Thus
we have reduced the problem to finding the number of divisors (both positive and negative) of 2520.



We can factor 2520 = 23 · 32 · 5 · 7. Using the formula for the number of positive divisors of an integer,
we see that 2520 has (3 + 1)(2 + 1)(1 + 1)(1 + 1) = 48 positive divisors. The negative divisors of 2520
are just the opposites of the positive divisors, so there are 48 of them. Thus there are 96 positive or
negative divisors of 2520, and so the equation has 96 solutions.

5. (Yasha Berchenko-Kogan) The popularity of a positive integer n is the number of positive integer divisors
of n. For example, 1 has popularity 1, and 12 has popularity 6. For each number n between 1 and 30
inclusive, Cathy writes the number n on k pieces of paper, where k is the popularity of n. Cathy then
picks a piece of paper at random. Compute the probability that she will pick an even integer.

Solution: This problem is a straightforward computation, but there are some shortcuts that can let us
solve it faster. Let τ(n) denote the number of positive divisors of n. If n is odd, then τ(2kn) = (k+ 1)n.
This fact allows us to compute τ(n) for all n less than or equal to 30 faster by making the following
table.

n τ(n) 2n τ(2n) 4n τ(4n) 8n τ(8n) 16n τ(16n)
1 1 2 2 4 3 8 4 16 5
3 2 6 4 12 6 24 8
5 2 10 4 20 6
7 2 14 4 28 6
9 3 18 6
11 2 22 4
13 2 26 4
15 4 30 8
17 2
19 2
21 4
23 2
25 3
27 4
29 2

37 36 21 12 5

There are shortcuts to adding the numbers in each column. Notice that for most odd n in the table,
τ(n) = 2. Thus one can quickly add up the numbers in the first column by computing 2 · 15 = 30, and
then adding the difference between each entry and 2 to get a total of 37. A similar trick can be used for
adding up the values of τ(2n).

Thus Cathy has 37 pieces of paper with an odd number written on them, and she has 37+36+21+12+5 =

111 pieces of paper in total, so the probability of picking an even integer is 1− 37
111 =

2
3

.

6. (Yasha Berchenko-Kogan) Zach rolls five tetrahedral dice, each of whose faces are labeled 1, 2, 3, and 4.
Compute the probability that the sum of the values of the faces that the dice land on is divisible by 3.

Solution: The easiest way to do this problem is to use generating functions. If f(x) = 1
4 (x+x2+x3+x4),

then the nth coefficient of f is the probability that the outcome of a single dice roll is n. Let g(x) =
(f(x))5. It is not hard to check that the nth coefficient of g is the probability that the sum of five dice
rolls is n. Let ω = −1+i

√
3

2 be a third root of unity. Notice that 1n + ωn + (ω2)n is equal to zero if n is
not divisible by 3 and is equal to 3 if n is divisible by 3. We conclude that 1

3 (g(1) + g(ω) + g(ω2)) is the
sum of the nth coefficients of g where n is divisible by 3, which is precisely the probability that the sum
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of five dice rolls is divisible by 3. Thus, this probability is

1
3
(
g(1) + g(ω) + g(ω2)

)
=

1
3
(
(f(1))5 + (f(ω))5 + (f(ω2))5

)
=

1
3
(
1 + 1

1024 (ω + ω2 + 1 + ω) + 1
1024 (ω2 + ω + 1 + ω2)

)
=

1
3
(
1 + 1

1024ω + 1
1024ω

2
)

=
1
3

(
1− 1

1024

)
=

341
1024

7. (Yasha Berchenko-Kogan) Compute all real numbers a such that the polynomial x4 +ax3 +1 has exactly
one real root.

Solution: Let r be the real root of the polynomial. Since the polynomial must have an even number
of nonreal roots, we know that r is either a double root or a quadruple root. If r were a quadruple root,
then the polynomial would have the form x4 + ax3 + 1 = (x− r)4 = x4− 4rx3 + 6r2x2− 4r3x+ r4. This
would imply that 0 = 4r3, which implies that r = 0, which contradicts the fact that r4 = 1. Therefore,
r must be a double root of x4 + ax3 + 1.

Let the two complex roots of x4 + ax3 + 1 be c± di for some real numbers c and d. Then

x4 + ax3 + 1 = (x− r)2(x− (c+ di))(x− (c− di)) = (x2 − 2rx+ r2)(x2 − 2cx+ c2 + d2)

= x4 − 2(r + c)x3 + (r2 + 4rc+ c2 + d2)x2 − 2(rc2 + rd2 + r2c)x+ r2(c2 + d2)

We thus have the following system of equations that we would like to solve for a:

−2(r + c) = a

r2 + 4rc+ c2 + d2 = 0

−2(rc2 + rd2 + r2c) = 0

r2(c2 + d2) = 1

The fourth equation implies that r 6= 0, so we can factor −2r out of the third equation to obtain
c2 + d2 + rc = 0. We conclude that c2 + d2 = −rc. Substituting this into the second equation, we see
that r2 + 3rc = 0. Again, since r 6= 0, we find that r + 3c = 0, so c = − r

3 . Substituting c2 + d2 = −rc
into the fourth equation, we see that r2(−rc) = 1, so c = − 1

r3 . We conclude that r
3 = 1

r3 , so r4 = 3, and

so r = ± 4
√

3. We conclude that a = −2(r + c) = −2(r − r
3 ) = − 4

3r = ±4 4
√

3
3

. It is not hard to check

that both of these values of a do indeed give polynomials whose only real root is r = ∓ 4
√

3.

It is also possible to do this problem using calculus by noting that x4 + ax3 + 1 and its derivative must
have a common root.

8. (Yasha Berchenko-Kogan) Alice and Bob are going to play a game called extra tricky double rock paper
scissors (ETDRPS). In ETDRPS, each player simultaneously selects two moves, one for his or her right
hand, and one for his or her left hand. Whereas Alice can play rock, paper, or scissors, Bob is only
allowed to play rock or scissors. After revealing their moves, the players compare right hands and left
hands separately. Alice wins if she wins strictly more hands than Bob. Otherwise, Bob wins. For
example, if Alice and Bob were to both play rock with their right hands and scissors with their left
hands, then both hands would be tied, so Bob would win the game. However, if Alice were to instead
play rock with both hands, then Alice would win the left hand. The right hand would still be tied, so
Alice would win the game. Assuming both players play optimally, compute the probability that Alice
will win the game.

Solution: We first introduce some shorthand. Let an expression like B : RS mean “Bob plays rock
with his left hand and scissors with his right hand,”. Since Bob cannot play paper, Alice would never
play scissors, because playing rock would always be strictly better. Notice that B : SS beats A : PP ,
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A : RP , and A : PR, but loses to A : RR. On the other hand B : RS beats A : PP and A : RP , but
loses to A : PR and A : RR. Thus B : SS is strictly a better move than B : RS. Similarly, B : SS is
strictly a better move than B : SR. Thus, if Bob plays rationally, he will only play B : SS or B : RR.
Now, notice that A : PP , A : PR, and A : RP all beat B : RR but lose to B : SS. Thus the moves
A : PP , A : PR, and A : RP are equivalent, so the game where Alice can only play A : PP and A : RR
is equivalent to the original game. We see that A : PP beats B : RR but loses to B : SS, and A : RR
beats B : SS but loses to B : RR. Thus, if both players play optimally, the game is symmetric, so the

probability that Alice wins is
1
2

.

9. (Yasha Berchenko-Kogan) Compute the positive integer n such that log3 n < log2 3 < log3(n+ 1).

Solution: We immediately see that log3 3 ≤ 1 < log2 3 < 2 = log3 9. Thus 3 ≤ n ≤ 8. The trick
for getting a better estimate is to multiply the inequality by an integer. For example, we know that
2 log3 n < 2 log2 3 < 2 log3(n + 1), which is equivalent to log3(n2) < log2 9 < log3((n + 1)2). We know
that log3(52) < log3 27 = 3 < log2 9 < 4 = log3(92). We thus see that 5 ≤ n ≤ 8. Likewise, we know
that log3(n3) < log2 27 < log3((n+ 1)3) and log3(43) < log3 81 = 4 < log2 27 < 5 = log3 243 < log3(73),
so 4 ≤ n ≤ 6. Combined with our earlier knowledge, we see that n = 5 or n = 6. It remains to determine
which of log2 3 and log3 6 is greater.

To simplify our calculations, notice that log3 6 = 1 + log3 2. We note that 4 log2 3 = log2 81, which
is between 6 and 7. Unfortunately, 4 log3 6 = 4 + log3 16 is also between 6 and 7, so we still don’t
know which one is bigger. Next we try computing 5 log2 3 = log2 243, which is between 7 and 8. We
see that 5 log3 6 = 5 + log3 32 is between 8 and 9, so we can conclude that log2 3 < log3 6. Thus
log3 5 < log2 3 < log3 6, so n = 5 .

10. (Brian Lawrence) Compute the number of 10-bit sequences of 0’s and 1’s do not contain 001 as a
subsequence.

Solution: We’ll deal with the sequence of all zeroes as a special case, so assume for now that all of the
sequences have at least one 1. Notice that if we remove the trailing zeroes from a 10-bit sequence not
containg 001, then we obtain a n-bit sequence ending in a 1 that does not contain two zeroes in a row,
where 1 ≤ n ≤ 10. Conversely, if we start with an n-bit sequence ending in a 1 that does not contain
two zeroes in a row, then we can recover the original 10-bit sequence by adding zeroes at the end. Thus
we have reduced the problem to counting the number of n-bit sequences that end in a 1 and do not have
two zeroes in a row.

Let Sn denote the number of n-bit sequences that do not contain two consecutive zeroes and end in a
one. Consider such a sequence. If the first digit is a zero, then the second digit must be a one. The
remaining n − 2 digits can be any sequence that does not contain two zeroes in a row and ends in a 1.
On the other hand, if the first digit is a one, then the remaining n− 1 digits can be any sequence that
does not contain two zeroes and ends in a one. Thus Sn = Sn−2 + Sn−1. Notice that S1 = 1 (the only
possible one-bit sequence is 1), and S2 = 2 (the only possible two-bit sequences are 01 and 11). Thus
Sn = Fn+1, where Fn+1 denotes the n+ 1-st Fibonacci number.

The total number of 10-bit sequences that do not contain 001 is the sum of Sn where n ranges from
1 to 10, plus one for the sequence of all zeroes that we ignored earlier. Thus, the answer is the sum
1 + F2 + F3 + · · · + F11. Notice that 1 = F1, so our answer is the sum of the first eleven Fibonacci
numbers. A well-known formula that can be easily proved with induction states that the sum of the
first m Fibonacci numbers is Fm+2 − 1, so our answer is F13 − 1. We can quickly compute that the
first thirteen terms of the Fibonacci sequence are 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, so the answer
is 233− 1 = 232 .
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