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1. (Sam Elder) Compute the degree of the least common multiple of the polynomials x− 1, x2 − 1, x3 −
1, . . . , x10 − 1.

Solution 1: The roots of xn−1 are the nth roots, of unity. It’s clear that none of these roots are
repeated, so the gcd will be the polynomial with roots at each of the 1st through 10th roots of unity.
Since these are just e

i2πm
n for 0 ≤ m < n and (m,n) = 1, and n ≤ 10, we must count the number of

reduced fractions between 0 and 1 whose denominators are at most 10. There is 1 with denominator 1
(1/1), 1 with 2 (1/2), 2 with 3 (1/3 and 2/3), 2 with 4, 4 with 5, 2 with 6, 6 with 7, 4 with 8, 6 with 9,
and 4 with 10. (In general, there are φ(n) with n, where φ is Euler’s totient function.) Adding these up
yields 32 .

Solution 2: We can factor these as products of irreducible (cyclotomic) polynomials: x−1, (x−1)(x+
1), (x−1)(x2 +x+ 1), (x−1)(x+ 1)(x2 + 1), (x−1)(x4 +x3 +x2 +x+ 1), (x−1)(x+ 1)(x2 +x+ 1)(x2−
x+1), (x−1)(x6 +x5 +x4 +x3 +x2 +x+1), (x−1)(x+1)(x2 +1)(x4 +1), (x−1)(x2 +x+1)(x6 +x3 +1),
and (x− 1)(x+ 1)(x4 + x3 + x2 + x+ 1)(x4 − x3 + x2 − x+ 1), and then combine all factors that show
up. Their degrees are 1 + 1 + 2 + 2 + 4 + 2 + 6 + 4 + 6 + 4 = 32 again. (φ(n) is also the degree of the
nth cyclotomic polynomial.)

2. (Yasha Berchenko-Kogan) A line in the xy plane is called wholesome if its equation is y = mx+ b where
m is rational and b is an integer. Given a point with integer coordinates (x, y) on a wholesome line l, let
r be the remainder when x is divided by 7, and let s be the remainder when y is divided by 7. The pair
(r, s) is called an ingredient of the line l. The (unordered) set of all possible ingredients of a wholesome
line l is called the recipe of l. Compute the number of possible recipes of wholesome lines.

Solution: Since we’re working modulo 7, a natural collection of lines to consider is y = mx+ b where
m ∈ {0, 1, 2, 3, 4, 5, 6} and b ∈ {0, 1, 2, 3, 4, 5, 6}. The recipe of one of these lines contains (0, b) and(
1,m+ b

)
, where m+ b denotes the remainder when m+ b is divided by 7. It is easy to check that this

recipe has no other ingredients with first coordinate 0 or 1. We conclude that these 49 lines all have
different recipes.

We need to check that there are no other possible recipes. Let y = mx+ b be any wholesome line, and
let m = c

d , where c and d are relatively prime integers. Thus we have dy = cx + db. As long as s is
not divisible by 7, we can find a number t such that td ≡ 1 (mod 7). We conclude that tdy ≡ tcx+ tdb
(mod 7), so y ≡ tcx+ b (mod 7). Thus the line y = mx+ b has the same recipe as the line y = tcx+ b,
so it is one of the 49 lines above.

However, if d is divisible by 7, then cx = d(y−b) is also divisible by 7. Since c and d are relatively prime,
we know that c is not divisible by 7, so xmust be divisible by 7. Thus the first coordinate of any ingredient
of this line is 0. We note that the line y = 1

7x has the recipe {(0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (0, 6)}.
Are there any other recipes of lines where d is divisible by 7? Notice that for any integer n, (x, y) =
(d, nc+ b) is an integer point on the line y = mx+ b, with corresponding ingredient (0, nc+ b). Since c is
not divisible by 7, we know that {nc+ b | n ∈ Z} = {0, 1, 2, 3, 4, 5, 6}. The recipe contains all ingredients
with first coordinate 0, and so it is the same recipe as for the line y = 1

7x.

Therefore, we have a total of 49 + 1 = 50 recipes.

3. (Ying-Ying Tran) Let τ(n) be the number of distinct positive divisors of n. Compute
∑
d|15015 τ(d),

that is, the sum of τ(d) for all d such that d divides 15015.

Solution: A multiplicative function is a function f defined on the positive integers such that f(ab) =
f(a)f(b) whenever a and b are relatively prime. It is easy to use the formula for the number of positive
divisors of n to check that τ is indeed a multiplicative function.

Moreover, it is not difficult to prove that if f is a multiplicative function, then g(n) =
∑
d|n f(d) is also

a multiplicative function. In particular,
∑
d|n τ(d) is multiplicative. Notice that 15015 = 3 · 5 · 7 · 11 · 13.



Notice also that for any prime p, we have
∑
d|p τ(p) = τ(1) + τ(p) = 1 + 2 = 3. Therefore,

∑
d|15015

τ(d) =

∑
d|3

τ(d)

∑
d|5

τ(d)

∑
d|7

τ(d)

∑
d|11

τ(d)

∑
d|13

τ(d)

 = 3 · 3 · 3 · 3 · 3 = 243

4. (Yasha Berchenko-Kogan) Suppose 2202010b − 22020103 = 7181326510. Compute b. (nb denotes the
number n written in base b.)

Solution: A quick computation yields 2202010b = 71813265 + 2(3)6 + 2(3)5 + 2(3)3 + 3 = 71 815 266.
To get a rough bound on b, we see that 2000000b = 2 ·b6 < 71 815 266 < 3 ·b6 = 3000000b. Since 2 ·206 =
128 000 000 > 71 815 266, we know that b < 20. Since 2 · 106 = 2 000 000 < 71 815 266, we know that
b > 10. Notice that b divides 2202010b = 71 815 266. Factoring, we see that 71 815 266 = 18 · 3 989 737.
We can check that no prime under 20 divides 3 989 737, so the only number between 10 and 20 that
divides 2202010b is 18. We conclude that b = 18 .

One can also solve this problem by letting d = 20 − b and approximating 71813265 ≈ 2 · (20 − d)6 ≈
2(64 · 106 − 6 · 32 · 105d). Thus d ≈ 128 000 000−71 813 265

38 400 000 ≈ 1.5, suggesting that b is either 18 or 19. One
could then refine the approximation to guess that the answer is 18, or use the first method to check that
2202010b is divisible by 18 but not 19.

5. (Connor Ahlbach) Let x = (3−
√

5)/2. Compute the exact value of x8 + 1/x8.

Solution: Note that (3−
√

5)(3 +
√

5) = 9− 5 = 4. Thus x · 3+
√

5
2 = 1, so x+ 1

x = 3−
√

5
2 + 3+

√
5

2 = 3.
Squaring both sides, we obtain the equation x2 + 2 + x−2 = 9, so x2 + x−2 = 7. Squaring both sides
again, we find that x4 + 2 +x−4 = 49, so x4 +x−4 = 47. Squaring both sides one last time, we find that
x8 + 2 + x−8 = 2209, so x8 + 1

x8 = 2207 .

6. (Yasha Berchenko-Kogan) Compute the largest integer that has the same number of digits when written
in base 5 and when written in base 7. Express your answer in base 10.

Solution: Let n be the largest such number, and assume that n has k digits in base 5 and in base 7.
Then 5k−1 ≤ n ≤ 5k− 1 and 7k−1 ≤ n ≤ 7k− 1. In particular, we see that 7k−1 ≤ 5k− 1. We would like
to find the largest k for which this inequality is true. We see that 71 = 7 < 24 = 52−1, 72 = 49 < 124 =
53 − 1, 73 = 343 < 624 = 54 − 1, and 74 = 2401 < 3124 = 55 − 1, but 75 = 16807 > 15624 = 56 − 1.
Thus the largest possible value of k is 5. Therefore, the answer is the largest 5-digit number in base 5,
which is 55 − 1 = 3124 = 444445 = 120527.

7. (Sam Elder) Three circles with integer radii a, b, c are mutually externally tangent, with a ≤ b ≤ c and
a < 10. The centers of the three circles form a right triangle. Compute the number of possible ordered
triples (a, b, c).

Solution: Using the Pythagorean theorem, we see that (a + b)2 + (a + c)2 = (b + c)2. Expanding,
we see that 2a2 + b2 + c2 + 2ab + 2ac = b2 + c2 + 2bc. We conclude that a2 + ab + ac = bc, so
(b − a)(c − a) = a2 − ab − ac + bc = 2a2. Notice that b ≥ a and c ≥ a, so b − a and c − a are positive
divisors of 2a2. Thus for each particular value of a, we get a solution (b, c) for each pair of positive
numbers whose product is 2a2. Since we have the condition that b ≤ c, this number is equal to half the
number of divisors of 2a2. We compute this number for 1 ≤ a ≤ 9:

a 1 2 3 4 5 6 7 8 9
2a2 2 8 18 32 50 72 98 128 162

1
2τ(2a2) 1 2 3 3 3 6 3 4 5

Thus, the total number of solutions (a, b, c) with a ≤ b ≤ c is 1 + 2 + 3 + 3 + 3 + 6 + 3 + 4 + 5 = 30 .

8. (Yasha Berchenko-Kogan) Six friends are playing informal games of soccer. For each game, they split
themselves up into two teams of three. They want to arrange the teams so that, at the end of the day,
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each pair of players has played at least one game on the same team. Compute the smallest number of
games they need to play in order to achieve this.

Solution: Of the three players on the same team in the first game, two of them must also be on the
same team in the second game. Call these two players A and B, and call the third player on their team
in the first game C. Let D and E be C’s teammates in the second game, and let F be the sixth player.
Thus, in the first game, A, B, and C played against D, E, and F . In the second game, A, B, and F
played against C, D, E. After the first two games, A and D haven’t yet played with each other, B and
E haven’t yet played with each other, and C and F haven’t yet played with each other. It is impossible
to set up the third game so that A plays with D, B plays with E, and C plays with F . Thus the six
friends will not be able to achieve their goal after three games. However, they can achieve their goal in
four games. For example, if A, B, and D can play against C, E, and F in the third game, and A, B,
and E can play against C, D, and F in the fourth game. Thus the answer is 4 .

9. (Yasha Berchenko-Kogan) Let A and B be points in the plane such that AB = 30. A circle with integer
radius passes through A and B. A point C is constructed on the circle such that AC is a diameter of
the circle. Compute all possible radii of the circle such that BC is a positive integer.

Solution: Since AC is the diameter of the circle and B is on the circle, we know that ∠ABC is
a right angle. Let r be the radius of the circle, and let x = BC. By the Pythagorean theorem,
302 +x2 = (2r)2. Since 302 is even and (2r)2 is even, we conclude that x must be even. Let y = x

2 . Then
225 = 152 = r2 − y2 = (r + y)(r − y). Since r + y and r − y are integers, they are factors of 225. The
factors of 225 are 1, 3, 5, 9, 15, 25, 45, 75, 225. If r + y = 225 and r − y = 1, then r = 1

2 (225 + 1) = 113.
If r + y = 75 and r − y = 3, then r = 39. If r + y = 45 and r − y = 5, then r = 25. If r + y = 25 and
r − y = 9, then r = 17. We can’t have r + y = 15 and r − y = 15 because then y would be zero. Thus
the possible radii are 17, 25, 39, 113 .

10. (Tim Black) Each square of a 3 × 3 grid can be colored black or white. Two colorings are the same if
you can rotate or reflect one to get the other. Compute the total number of unique colorings.

Solution: Unfortunately, you can’t just take the number of ways to color the grid, 512, and divide
by 8 to account for the seven other equivalent colorings you can get by reflecting and rotating, because
some colorings, such as the coloring where all squares are black, have no colorings that are equivalent
to them. The easiest way to do this problem is with Burnside’s lemma, which tells you how to count
things up to transformations such as rotations and reflections. To use Burnside’s lemma, we need to do
the following:

• Describe the objects without taking the transformations into account.
In this problem, the objects are colorings of a 3× 3 grid.

• Describe all of the transformations that we’re allowed to perform on the objects.
In this problem, we can rotate and reflect the grid. There are four possible rotations: 90◦, 180◦,
270◦, and 0◦ (leaving the grid in place). There are also four ways to reflect the grid: across the
vertical axis, across the horizontal axis, and across one of the two diagonal axes.

• For each transformation, count how many objects remain the same after the transformation is
applied. In other words, count how many objects are symmetric with respect to each transformation.
The colorings that are symmetric with respect to a 90◦ or a 270◦ rotation have the following form,
where A, B, and C denote arbitrary colors. There are 23 = 8 of them.

B C B
C A C
B C B

The colorings that are symmetric with respect to a 180◦ rotation have the following form, where
A, B, C, D, and E denote arbitrary colors. There are 25 = 32 of them.
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B C D
E A E
D C B

Any coloring remains the same after a 0◦ rotation, so there are 29 = 512 of them.
The colorings that are symmetric with respect to reflections across the vertical axis have the fol-
lowing form, where A, B, C, D, E, and F denote arbitrary colors. There are 26 = 64 of them.

A B A
C D C
E F E

It is easy to check that for each of the other three reflections, there are also 26 = 64 colorings that
are symmetric with respect to it.

• The number of objects up to transformation is the average of the numbers of objects that are
symmetric with respect to a particular transformation.
In this case, the number of colorings symmetric with respect to 90◦ and 270◦ rotations is 8, the
number of colorings symmetric with respect to 180◦ rotations is 32, the number of colorings sym-
metric with respect to 0◦ rotations is 512, and the number of colorings symmetric with respect to
each of the four reflections is 64. Thus the total number of colorings up to rations and reflections
is 1

8 (8 + 8 + 32 + 512 + 64 + 64 + 64 + 64) = 1 + 1 + 4 + 64 + 8 + 8 + 8 + 8 = 102 .

There are several ways of doing this problem without Burnside’s lemma. One way is to notice that
exactly half of the colorings will have a white center square, and exactly half of the colorings will have
a black center square. Thus it’s enough to count the number of colorings of the eight outside squares,
and then multiply the answer by two. We can do this with a careful case analysis.

Assume all four of the corners are black. Either all four sides are black, three of them are black, two
adjacent ones are be black, two opposite ones are black, one of them is black, or all of them are white.
We have a total of 6 colorings.

Now assume three of the corners are black. There is one possible coloring if all four sides are black. If
three of the sides are black, then the white side can be adjacent to the white corner or not, so there are
two colorings. We can have two adjacent black sides in three distinct ways: they might surround the
white corner, be adjacent to the white corner, or be opposite the white corner. If we have two black
sides that are opposite each other, then one can check that there is just one possible coloring. If three
of the sides are white, then we again have two colorings, and if all four sides are white, we again have
one colorings. Thus there are 10 possible colorings if three of the corners are black.

Now assume two opposite corners are black. Again, there is one possible coloring if all four sides are
black. If three of the sides are black, one can check that there is still only one possible coloring up to
rotations and reflections. If two adjacent sides are black, then they either surround a black corner or
a white corner, so we have two possibilities. If two opposite sides are black, then again there is only
one possible coloring. If three of the sides are white, then there is again just one possible coloring, and
similarly for the case where all four sides are white. Thus there are 7 possible colorings if two opposite
corners are black.

Finally, assume two adjacent corners are black. There is one possible coloring if all four sides are black.
There are three possibilities if three of the sides are black: the white side can be between the black
corners, adjacent to one of the black corners, or opposite the black corners. If two opposite sides are
black, then we have two distinct colorings: the side inbetween the black corners can be either black or
white. If two adjacent sides are black, then there are again two possibilities: the black sides can surround
a black corner or a white corner. If three of the sides are white, there are again three colorings, and
if all four sides are white, there is again just one coloring. Thus there are 12 possible colorings if two
adjacent corners are black.
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The number of colorings with three white corners is the same as the number of colorings with three
black corners, which is 10. The number of colorings with all white corners is the same as the number of
colorings with all black corners, which is 6.

Thus there are 6 + 10 + 7 + 12 + 10 + 6 = 51 ways to color the outside eight squares, so there are
2 · 51 = 102 colorings of the entire 3× 3 grid.

11. (Yasha Berchenko-Kogan) Compute all positive integers n such that the sum of all positive integers that
are less than n and relatively prime to n is equal to 2n.

Solution: Clearly, n = 1 and n = 2 do not satisfy the condition of the problem. Assume henceforth
that n > 2. Notice that if k is a positive number relatively prime to n, then n−k is also relatively prime
to n. Since n > 1, we know that n − k is positive. Since n 6= 2, we know that n 6= n − k. (Otherwise,
n
2 would be relatively prime to n, which is impossible from n 6= 2.) Thus we can split the numbers
relatively prime to n into pairs (k, n − k) whose sum is n. We conclude that the sum of all positive
numbers less than or equal to n and relatively prime to n is n

2φ(n), where φ(n) is the number of positive
numbers less than or equal to n that are relatively prime to n. The problem tells us that this sum is 2n,
so φ(n) = 4.

We can decompose n as a product of primes, so n = pα1
1 pα2

2 · · · pαss . It is a standard fact that φ(n) =
pα1−1
1 (p1− 1)pα2−1

2 (p2− 1) · · · pαs−1
s (ps− 1). Since φ(n) = 4, we see that pi− 1 ≤ 4, so pi ≤ 5. Thus the

only primes that can divide n are 2, 3, and 5. Moreover, 3 and 5 can’t both divide n, because then φ(n)
would be divisible by (3− 1)(5− 1) = 8. We also know that 52 can’t divide n, because then φ(n) would
be divisible by 5(5−1) = 20. Likewise 32 can’t divide n because φ(n) cannot be divisible by 3(3−1) = 6.
Finally, 24 can’t divide n because then φ(n) would be divisible by 23(2− 1) = 8. Thus the only numbers
that could have φ(n) = 4 are 22, 23, 3, 2 · 3, 22 · 3, 23 · 3, 5, 2 · 5, 22 · 5, and 23 · 5. We can quickly compute
φ(n) for all of these numbers, and we see that the only ones that have φ(n) = 4 are 23, 22 ·3, 5, and 2 ·5.
Thus the positive integers satisfying the condition in the problem are 5, 8, 10, and 12 .

12. (Yasha Berchenko-Kogan) The distance between a point and a line is defined to be the smallest possible
distance between the point and any point on the line. Triangle ABC has AB = 10, BC = 21, and
CA = 17. Let P be a point inside the triangle. Let x be the distance between P and

←→
BC, let y be the

distance between P and
←→
CA, and let z be the distance between P and

←→
AB. Compute the largest possible

value of the product xyz.

Solution: We first draw a diagram.

B C

A

21

1710

Px

yz

Let K be the area of 4ABC. The segments PA, PB, and PC split 4ABC into three triangles.
The three triangles have area 21x

2 , 17y
2 , and 10z

2 , so K = 1
2 (21x + 17y + 10z). Using Heron’s formula,

we find that the area of the triangle is K =
√

24 · 3 · 7 · 14 = 84. Thus 21x + 17y + 10z = 168. It
is not hard to check that the converse is also true: If x, y, and z are positive numbers satisfying
21x + 17y + 10z, then there exists a point P such that x, y, and z are the distances to the edges of
the triangle. Using the fact that the geometric mean is less than or equal to the arithmetic mean, we
see that 56 = 21x+17y+10z

3 ≥ 3
√

(21x)(17y)(10z). We conclude that xyz ≤ 563

21·17·10 = 562·4
3·17·5 = 12544

255 and
that equality occurs when 21x = 17y = 10z. Thus if x = 8

3 , y = 56
17 , and z = 28

5 , then xyz attains its
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maximum value of
12544
255

.

13. (Yasha Berchenko-Kogan) This problem was motivated by a paper by Christopher Tuffley, available at
http://tur-www1.massey.ac.nz/~ctuffley/papers/Keg.pdf

Alice, Bob, David, and Eve are sitting in a row on a couch and are passing back and forth a bag of
chips. Whenever Bob gets the bag of chips, he passes the bag back to the person who gave it to him
with probability 1

3 , and he passes it on in the same direction with probability 2
3 . Whenever David gets

the bag of chips, he passes the bag back to the person who gave it to him with probability 1
4 , and he

passes it on with probability 3
4 . Currently, Alice has the bag of chips, and she is about to pass it to Bob

when Cathy sits between Bob and David. Whenever Cathy gets the bag of chips, she passes the bag
back to the person who gave it to her with probability p, and passes it on with probability 1− p. Alice
realizes that because Cathy joined them on the couch, the probability that Alice gets the bag of chips
back before Eve gets it has doubled. Compute p.

Solution: We begin with the general case. Let X is a person who passes the chips back with probability
x and passes it on with probability 1−x, and let Y be a person who passes the chips back with probability
y and on with probability 1− y. Assume that X and Y are sitting next to each other, and we give the
chips to X. X and Y will keep passing the chips back and forth between each other until either X
passes them to us or Y passes them on. We would like to compute the probability that we get the chips
back from X. With probability x, X will give the chips right back to us. Alternatively, X might pass
the chips on to Y , who then might pass them back to X, who then might pass them back to us. This
scenario happens with probability (1−x)y(1−x). It’s also possible that X and Y pass the chips back and
forth twice before giving them back to us. This scenario happens with probability (1− x)yxy(1− x). In
general, if X and Y pass the chips back and forth k times before giving them back to us, then X will pass
the chips on twice (once to give them to Y at the beginning, and once to give them back to us), Y will
pass the chips back to X k times, and X will pass the chips back to Y k− 1 times. Thus the probability
that they pass the chips back and forth k times and then give them back to us is (1− x)2xk−1yk. The
total probability that we get the chips back is

x+
∞∑
k=1

(1− x)2xk−1yk = x+ (1− x)2y
∞∑
k=1

(xy)k−1 = x+ (1− x)2y 1
1−xy

=
(x− x2y) + (y − 2xy + x2y)

1− xy
=
x+ y − 2xy

1− xy

Thus we can replace X and Y with a single person Z who passes the chips back with probability x+y−2xy
1−xy

and on with probability 1 − x+y−2xy
1−xy . The important thing to notice about this formula is that it is

symmetric in x and y. This means that we’d get the chips back with the same probability if X and Y
were to swap places with each other. In the problem, this means that we’d get the same answer if Cathy
sat between David and Eve rather than between Bob and David.

Using this formula, we know that we can replace Bob and David with a single person who passes the
chips back with probability

1
3+ 1

4−2 1
3

1
4

1− 1
3

1
4

=
5
12
11
12

= 5
11 . Therefore, before Cathy sits down, Alice will get the

chips back before Eve gets them with probability 5
11 .

As we mentioned earlier, we will get the same answer if we have Cathy sit between David and Eve.
Since we can replace Bob and David with a single person who passes the chips back with probability 5

11 ,
we see that, after Cathy arrives, the probability that Alice gets the chips back before Eve gets them is
5
11+p−2 5

11p

1− 5
11p

= 5+11p−10p
11−5p = 5+p

11−5p . We are told that this probability is double 5
11 , so 5+p

11−5p = 10
11 . Thus

55 + 11p = 110− 50p, so 61p = 55. Thus p =
55
61

.
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14. (Tim Black) Circle O is in the plane. Circles A, B, and C are congruent, and are each internally tangent
to circle O and externally tangent to each other. Circle X is internally tangent to circle O and externally
tangent to circles A and B. Circle X has radius 1. Compute the radius of circle O.

A B

C

O

X

Solution: Let R be the radius of circle O, and let r be the radii of circles A, B, and C. Notice that
4AOB is a 30◦-120◦-30◦ triangle. Thus AB =

√
3 · OA. We see that AB = 2r. Moreover, if we draw

the ray
−→
OA, we see that R = OA+ r =

√
3

3 AB + r = 2
√

3+3
3 r.

Let M be the midpoint of AB. Since4AOM is a 30◦-60◦-90◦ triangle, we see that OM =
√

3
3 AM =

√
3

3 r.
Since the radius of circle X is 1, we see that R = OM + MX + 1. Thus MX = R − OM − 1 =(

3+2
√

3
3 −

√
3

3

)
r−1 = 3+

√
3

3 r−1. Since4AMX is a right triangle, we see that (AM)2+(MX)2 = (AX)2.
Notice that AM = r and AX = r + 1. Thus we have the equations

r2 +

(
3 +
√

3
3

r − 1

)2

= (r + 1)2

r2 +
4 + 2

√
3

3
r2 − 6 + 2

√
3

3
r + 1 = r2 + 2r + 1

4 + 2
√

3
3

r2 =
12 + 2

√
3

3
r

Thus r = 12+2
√

3
4+2
√

3
= 6+

√
3

2+
√

3
= (6 +

√
3)(2−

√
3) = 9− 4

√
3, and so R = 3+2

√
3

3 r = 1
3 (3 + 2

√
3)(9− 4

√
3) =

1 + 2
√

3 .

15. (Yasha Berchenko-Kogan) Compute the number of primes p less than 100 such that p divides n2 +n+ 1
for some integer n.

Solution: We would like to find all p such that n2 + n+ 1 ≡ 0 (mod p) for some n. If n ≡ 1 (mod p)
satisfies n2 +n+ 1 ≡ 0 (mod p), then 3 ≡ 0 (mod p), so p = 3. Assume henceforth that n 6≡ 1 (mod p).
Since n−1 6≡ 0 (mod p), we can obtain an equivalent equation by multiplying both sides of the equation
by (n − 1). Thus, for n 6≡ 1 (mod p), we find that n2 + n + 1 ≡ 0 (mod p) is equivalent to n3 − 1 ≡ 0
(mod p). We have thus reduced the problem to the question of whether there exists an n 6≡ 1 (mod p)
such that n3 ≡ 1 (mod p).

Fermat’s Little Theorem tells us that if n 6≡ 0 mod p, then np−1 ≡ 1 (mod p). If p− 1 is not divisible
by 3, then either p or p−2 is divisible by 3. Assuming p−1 is not divisible by 3, if n3 ≡ 1 (mod p), then
either np ≡ 1 (mod p) or np−2 ≡ 1 (mod p). We conclude that either np

np−1 ≡ 1 (mod p) or np−1

np−2 ≡ 1
(mod p). In either case, we conclude that n ≡ 1 (mod p), which we assumed was not the case.
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Conversely, assume p − 1 is divisible by 3. Note that if pick x 6≡ 0 (mod p) and set n = x
p−1
3 , then

n3 = xp−1 ≡ 1 (mod p). However, it might be true that n ≡ 1 (mod p). Assume for contradiction that
n = x

p−1
3 ≡ 1 (mod p) for all nonzero x modulo p. Then the polynomial x

p−1
3 −1 has p−1 roots modulo

p, but its degree is only p−1
3 , which is a contradiction. Thus there exists some x 6≡ 0 (mod p) such that

n = x
p−1
3 6≡ 1 (mod p) and n3 ≡ 1 (mod p).

We conclude that the only primes p such that p | n2 + n + 1 for some n are p = 3 and all p satisfying
3 | p − 1. If 3 | p − 1, we know that p − 1 is even, so 6 | p − 1. We can quickly check all the numbers
less than 100 that are congruent to 1 modulo 6 to see if they are prime. We find that these primes are
7, 13, 19, 31, 37, 43, 61, 67, 73, 79, and 97. There are 11 of them. Since p = 3 also satisfies the condition
of the problem, we conclude that there are 12 such primes.
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