
2010 Fall CHMMC Power Round

In this round, you will explore the pebbling number of graphs. For this part of the contest,
you must fully justify all of your answers unless otherwise specfied. In your solutions, you
may refer to the answers of earlier problems (but not later problems or later parts of the same
problem), even if you were not able to solve those problems. Be sure to read the background
information below before working on the problems.

A graph G is a collection of vertices with some pairs of vertices linked by edges. For this
problem, all the graphs are finite, all edges are undirected, there are no edges that go from
a vertex to itself, and there cannot be more than one edge between two vertices. We say
that a vertex u is a neighbor of a vertex v if there is an edge between u and v. A graph
is connected if for any pair of vertices one can find a path from one to the other along the
edges of the graph.

Alice and Bob play a game on a finite graph G. They have k pebbles, where k is a
positive integer. Alice sets up the game by taking the k pebbles and placing them on the
vertices of the graph, distributing them in any way she wishes. Alice then marks a vertex as
the target vertex. Bob then tries to get at least one pebble onto the target vertex. However,
Bob is only allowed to move pebbles as follows: If there is a vertex v with at least two
pebbles on it, Bob can remove two pebbles from it and then place one of these pebbles on
one of the neighbors of v. (The second pebble is removed from the game.) If, after moving
pebbles in this manner, Bob manages to move a pebble onto the target vertex, then Bob
wins. Otherwise, Alice wins. In particular, if Alice sets up the game with a pebble on the
target vertex, then Bob wins automatically.

For example, if G is the graph below and k = 4, Alice can set up the game as follows:
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If Alice selects the rightmost vertex as the target vertex, then Bob can win by removing
two pebbles from the leftmost vertex and placing a pebble on the middle vertex, and then
removing two pebbles from the middle vertex and placing one pebble on the rightmost vertex,
as shown below.
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The pebbling number of a connected graph G, denoted π(G), is defined to be the minimum
positive integer k such that Bob can always win, no matter how Alice distributes the k pebbles
or chooses the target vertex.
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1. Give the pebbling number of the graphs illustrated below. Demonstrate an initial
configuration with one fewer pebble for which Bob does not win. For this problem only,
you do not need to prove your pebbling number is correct or that your configuration
is unwinnable.

G1 G2 G3 G4

Solution: The pebbling number of G1 is 4. Bob does not win if 1 pebble is placed on
every vertex but the target one.

The pebbling number of G2 is 6. Bob does not win if 1 pebble is placed on each of
the top left and top right corner vertices, and 3 pebbles are placed on the bottom left
corner, with the target vertex the bottom right.

The pebbling number of G3 is 8. Bob does not win if 7 pebbles are placed on a vertex
and the target vertex is the one distance 3 away.

The pebbling number of G4 is 8. Bob does not win if the target vertex is the left one,
3 pebbles are placed in the right one, and 1 pebble is placed in each of the four vertices
on the top and bottom.

2. Let Kn denote the complete graph, which is defined to be the graph containing n
vertices with all possible edges drawn between them. Find the pebbling number of Kn

for each positive integer n ≥ 2.

Solution: We show π(Kn) = n. Let v be any vertex of Kn. If n− 1 pebbles are used,
Alice wins by placing no pebbles on v and 1 pebble on every other vertex and making
v the target vertex. On the other hand, if n pebbles are used, then either every vertex
has a pebble, in which case Bob has already won, or a vertex v has two pebbles. Then
the pebbles on v can be moved to the target vertex, and Bob wins.

3. Suppose that G is a connected graph with n vertices. Show that π(G) ≥ n.

Solution: It suffices to show Alice wins whenever n − 1 pebbles are used. Let v be
any vertex of G, and have Alice place one pebble on every vertex other than v, while
making v the target vertex. Bob can make no moves, so he cannot win.

4. (a) Let Pn denote the n-path, a graph containing n vertices v1, v2, . . . vn with an edge
between vi and vi+1 for i = 1, 2, . . . n − 1. Find π(Pn) for each positive integer
n ≥ 2.

(b) Let Cn denote the n-cycle, the same as Pn except there is an extra edge connecting
v1 and vn. Show that π(Cn) = 2n/2 for all even positive integers n ≥ 4.

2



Solution:

(a) π(Pn) = 2n−1. If less pebbles are used, Alice can place them all on v1 and make
vn the target vertex. Then Bob by induction can get at most 2n−k − 1 pebbles
onto vk, which is not enough to get all the way to vn.

To show Bob wins with 2n−1 pebbles, we proceed by induction. The base case
n = 1 is trivial. Given it is true for n−1, consider a configuration of 2n−1 pebbles
on Pn. WLOG the target vertex is not vn, else flip the whole graph around so v1
and vn swap places. Consider vertex vn, and suppose it has a pebbles. We can
get ba/2c of them onto vn−1. Then the total number of pebbles on v1, v2, . . . vn−1
is

2n−1 − a+ ba/2c = 2n−1 − da/2e ≥ 2n−1 − d2n−1/2e = 2n−2.

The last inequality follows from a ≤ 2n−1. So after moving as many pebbles
as we can off vn, we have 2n−2 pebbles on the other vertices. By the inductive
hypothesis, we can reach any vertex since the remaining vertices form a copy of
Pn−1. So Bob can always win.

(b) Suppose 2n/2 − 1 pebbles were used. Alice can place them all on v1 and make
v1+n/2 the target vertex. Then by induction Bob can get at most 2k − 1 pebbles
onto v1+n/2±k for 1 ≤ k ≤ n/2− 1, which is not enough to make it to v1+n/2.

To show Bob wins with 2n/2 pebbles, suppose WLOG that v1 is the target vertex,
and that vertex vi has pi pebbles for 2 ≤ i ≤ n. Let

S1 =
p2
2

+
p3
4

+ · · ·+ pn
2n−1 ,

S2 =
pn
2

+
pn−1

4
+ · · ·+ p2

2n−1 .

Observe that S1 + S2 ≥
∑n

i=1
pi

2n/2−1 = 2. So one of S1, S2 is greater than or equal
to 1. WLOG S1 ≥ 1. Move as many pebbles as possible from vn to vn−1, so vn has
at most 1 pebble. This new configuration has the same value of S1. Then move
everything possible from vn−1 to vn−2. Continue in this way until moving pebbles
to v2, meaning that v3, v4, . . . vn all have at most 1 pebble. Let q2, q3, . . . qn denote
the new number of pebbles on each vertex. S1 is still at least 1, and

q3
4

+ · · ·+ qn
2n−1 ≤

1

4
+ · · ·+ 1

2n−1 <
1

2
.

Therefore, q2
2
> 1

2
, so q2 ≥ 2. That means we have two pebbles on v2, which Bob

can move onto the target vertex v1 and win.

5. Let G be a connected graph with n vertices. Let v be a vertex of G, and let H be the
graph obtained by deleting v and all of its edges from G. Suppose that H is connected
and that π(H) = m. Show that π(G) ≤ 2m.

Solution: It suffices to show that Bob can always win if 2m pebbles are used. Suppose
the target vertex is v, the one deleted to form H. If v has any pebbles Bob wins
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automatically. Otherwise, 2m pebbles are on H. Arbitrarily split the 2m pebbles into
two sets A and B with m pebbles each. Let u be any neighbor of v (u exists since G
is connected). Because π(H) = m, we can use the m pebbles in A to get a pebble to
u. Likewise, we can use the m pebbles in B to get a second pebble to u. Now move
the two pebbles from u to v and win.

Now suppose the target vertex is in H, and that v has a pebbles. Move as many
pebbles from v onto any neighbor as possible; we can make ba/2c such moves. Then
the total number of pebbles on H is

2m− a+ ba/2c = 2m− da/2e ≥ 2m− d2m/2e = m.

So H has at least m pebbles, and since π(H) = m we can reach any target vertex with
them. So Bob wins in this case as well.

6. (a) Suppose that G is a connected graph with n vertices. Show that π(G) ≤ 2n−1.

(b) Find all connected graphs G such that π(G) = 2n−1.

Solution:

(a) We first prove a lemma: any connected graph G contains a vertex v that can
be removed with all of its edges and still leave a connected graph. If G contains
a cycle, cut an arbitrary edge of this cycle; this still leaves a connected graph.
Repeat until no more cycles remain. Call this new graph G′; since it has no cycles,
it is a tree. A tree contains at least one vertex u of degree 1. This can be seen by
the fact that G′ has one less edge than it has vertices, so if all vertices had degree
at least two there would be too many edges. Therefore, if we remove u from G′,
all the other vertices will still be connected. Likewise, if we remove u from G,
all other vertices will be connected by the edges present in G′, which G contains.
This proves the lemma.

We prove the problem by induction on n, the number of vertices. The base case
n = 1 is trivial. Suppose we have proven the case n−1, and let G be an arbitrary
graph with n vertices. By the lemma, a vertex v of G exists that can be removed
and still leave a connected graph. Let H be the graph obtained by removing v
and all of its edges. By the inductive hypothesis, π(H) ≤ 2n−2. By problem 5,
π(G) ≤ 2π(H) ≤ 2n−1. This completes the induction.

(b) TODO

7. Call a graph tight if for any pair of vertices u, v, either u and v are neighbors or there
is a vertex w such that w is a neighbor of both u and v.

(a) For each positive integer n ≥ 3, give an example of a tight graph G with n vertices
such that π(G) = n+ 1.

(b) Let G be a tight graph with n vertices. Show that π(G) ≤ 2n.
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Solution:

(a) Consider the graph G with vertices v1, v2, . . . vn such that v1 is adjacent to all
other vertices and no other edges exist. We claim π(G) = n + 1. First, we show
Alice can win if n pebbles are used. Have her place 1 pebble on each of v4, . . . vn,
3 pebbles on v3, and make v2 the target vertex. The only move Bob can make is
to use the two pebbles on v3 to put one on v1, and then he is stuck.

Now we show Bob wins if n+ 1 pebbles are used. If v1 is the target vertex, then
either it has a pebble or some other vertex has at least 2 pebbles, so this is easy.
Suppose WLOG that v2 is the target vertex. If v1 has at least 2 pebbles, Bob
wins in one move. If v1 has one pebble, at least one of v3, . . . vn has 2 pebbles,
so Bob moves from that vertex to v1, then from v1 to v2 and wins. Otherwise, v1
has no pebbles. If any of v3, . . . vn have 4 pebbles, Bob moves two pebbles to v1
and then wins. If at least two of v3, . . . vn have at least 2 pebbles, Bob moves a
pebble from each of them to v1 and then wins. If neither of these is true, then
out of v3, . . . vn one vertex has at most 3 pebbles and all others have at most 1.
This gives at most 3 + (n− 3) = n pebbles, a contradiction. So Bob wins in every
case.

(b) It suffices to show 2n pebbles are enough to win. Suppose Alice marked v as the
target vertex. Let u1, u2, . . . ud be the neighbors of v. Let w1, . . . wn−1−d be the
other vertices; each wi is a neighbor of some ui by the tight condition. Partition
the wi into A1, A2, . . . Ad, so that all vertices in Ai are neighbors of ui. (Some wi

may be neighbors of multiple ui; arbitrarily choose one.)

Notice that v, ui and the vertices in Ai, together with just the edges between ui
and these vertices, form a star graph with |Ai| + 2 vertices. In problem 7a, we
showed that this has pebbling number |Ai|+3. So if at least |Ai|+3 pebbles have
been placed on these vertices, Bob will win. Suppose then that |Ai| + 2 pebbles
at most have been placed on them.

Consider the total number of pebbles on all vertices. This is the sum of all the
pebbles on all the ui and Ai. By the above paragraph, this is at most

∑d
i=1(2 +

|Ai|) = 2d + (n − d − 1) = n + d − 1. Since d is the degree of v, d ≤ n − 1. So
at most 2n − 2 pebbles have been placed, a contradiction. Some ui, Ai together
have at least |Ai|+ 3 pebbles, and Bob will win.
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