Caltech Harvey Mudd
 Mathematics Competition

1. The numbers 25 and 76 have the property that when squared in base 10 , their squares also end in the same two digits. A positive integer is called amazing if it has at most 3 digits when expressed in base 21 and also has the property that its square expressed in base 21 ends in the same 3 digits. (For this problem, the last three digits of a one-digit number \underline{b} are $00 \underline{b}$, and the last three digits of a two-digit number $\underline{a b}$ are $0 \underline{a b}$.) Compute the sum of all amazing numbers. Express your answer in base 21 .
2. Let A, B, C, and D be points on a circle, in that order, such that $\overline{A D}$ is a diameter of the circle. Let E be the intersection of $\overleftrightarrow{A B}$ and $\overleftrightarrow{D C}$, let F be the intersection of $\overleftrightarrow{A C}$ and $\overleftrightarrow{B D}$, and let G be the intersection of $\overleftrightarrow{E F}$ and $\overleftrightarrow{A D}$. If $A D=8, A E=9$, and $D E=7$, compute $E G$.
3. Talithia throws a party on the fifth Saturday of every month that has five Saturdays. That is, if a month has five Saturdays, Talithia has a party on the fifth Saturday of that month, and if a month has four Saturdays, then Talithia does not have a party that month. Given that January 1, 2010 was a Friday, compute the number of parties Talithia will have in 2010.
4. Suppose a is a real number such that $3 a+6$ is the greatest integer less than or equal to a and $4 a+9$ is the least integer greater than or equal to a. Compute a.
