Johns Hopkins Math Tournament 2020 Individual Round: Algebra and Number Theory

February 8, 2020

Instructions

- DO NOT TURN OVER THIS PAPER UNTIL TOLD TO DO SO.
- This test contains 12 questions to be solved individually in 60 minutes.
- All answers will be integers.
- Only answers written on the appropriate area on the answer sheet will be considered for grading.
- Problems are weighted relative to their difficulty, determined by the number of students who solve each problem.
- No translators, books, notes, slide rules, calculators, abaci, or other computational aids are permitted. Similarly, graph paper, rulers, protractors, compasses, and other drawing aids are not permitted.
- If you believe the test contains an error, immediately tell your proctor and if necessary, report the error to the front desk after the end of your exam.
- Good luck!

1. The roots of a quadratic equation $a x^{2}+b x+c$ are 3 and 5 , and the leading coefficient is 2 . What is $a+b+c$?
2. If x is a real number satisfying $\frac{1}{\sqrt{x}}+\frac{2}{1+\sqrt{x}}=2$, find the value of x . Note that \sqrt{x} denotes the positive square root of x.
3. The sum of the squares of the reciprocals of the roots of the equation $x^{3}+2 x^{2}+8 x+7=0$ can be expressed as $\frac{p}{q}$, where p and q are relatively prime. Find $p+q$.
4. Our base-ten number system is endowed with a neat rule for divisibility by 9 : when an integer N is written in base-ten, N is divisible by 9 if and only if the sum of N 's digits is divisible by 9 . Compute the sum of all positive integers b_{10} between 11_{10} and 99_{10} such that any integer N is divisible by 9 if and only if the sum of N 's digits in base b is divisible by 9 .
5. Compute the value of

$$
\sum_{n=2}^{2018} \frac{2}{1+\log _{n}(2020-n)}
$$

6. Find the last three digits of 99^{99}.
7. Let $a_{1}=3, a_{2}=8$, and $a_{n}=\sum_{k=1}^{n-1} a_{k}$ for $n>2$. The value of $\sum_{n=1}^{\infty} \frac{1}{a_{n}}$ can be written as a common fraction $\frac{p}{q}$. Compute $p+q$.
8. What is the least number of weights required to weigh any integral number of pounds up to 360 pounds if one is allowed to put weights in both pans of a balance?
9. The equation $x^{3}+6 x-2=0$ has exactly one real solution, $x=\sqrt[3]{a}+\sqrt[3]{b}$, where a and b are integers not divisible by the cube of any prime. If $a>b$, then compute $100 a+b$.
10. For all $x>1$, the equation $x^{60}+k x^{27} \geq k x^{30}+1$ is satisfied. What is the largest possible value of k ?
11. Given a real number a_{1}, recursively generate a sequence $\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}$ satisfying

$$
a_{n+1}=-\frac{1}{a_{n}-1}-\frac{1}{a_{n}+1}
$$

for all $n \in \mathbb{N}$. Out of all real numbers, how many values of a_{1} result in the equality $a_{6}=a_{1}$?
12. Let $f(n)=n^{2}-1$ and $g(n)=(n+1)^{3}-(n-1)^{3}$. Let \times be a binary operation that acts on two ordered pairs, defined by the following rule: $(a, b) \times(c, d)=(a c, a d+b c)$. For integers $n \geq 3$, let

$$
\left(a_{n}, b_{n}\right)=[[[(f(2), g(2)) \times(f(3), g(3))] \times(f(4), g(4))] \times \cdots] \times(f(n), g(n))
$$

Determine the smallest n such that $b_{n}>2020 a_{n}$.

Algebra and Number Theory Solutions

1. As the two roots are 3,5 , and the leading coefficient is 2 , the equation could be written as $2(x-3)(x-$ $5)=2\left(x^{2}-8 x+15\right)=2 x^{2}-16 x+30$. So $a+b+c=2-16+30=16$.
2. First we can combine the two fractions by finding a common denominator, which is $(1+\sqrt{x}) \sqrt{x}=$ $\sqrt{x}+x$, giving us $\frac{1+3 \sqrt{x}}{\sqrt{x}+x}=2$. We can then multiply the denominator to the right side of the equation and subtract the right side of the equation from the left giving us $-2 x+\sqrt{x}+1=0$. This is quadratic in \sqrt{x} and we can thus apply the quadratic equation to get that $\sqrt{x}=1$. (The note allows us to ignore the negative solution) Thus $x=1$.
3. (Quickest solution) We can first generate a polynomial that has roots that equals the reciprocal of roots of the original equation by switching coefficients, doing that we get $7 x^{3}+8 x^{2}+2 x^{2}+1$. Let the sum of the roots be P_{1}, and by Vieta's formula we get $P_{1}=\frac{-8}{7}$. Let the sum of the squares of the roots be P_{2}. Using Newton's sum $\left(7 P_{2}+8 P_{1}+(2)(2)=0\right)$, we get $7 P_{2}+8 \frac{-8}{7}+2 \cdot 2=0, P_{2}=\frac{36}{49}$ Better solution: let the roots be a, b, c, we wish to find $\left(\frac{1}{a}\right)^{2}+\left(\frac{1}{b}\right)^{2}+\left(\frac{1}{c}\right)^{2}$. This is equivalent to $\frac{(a b+a c+a b)^{2}-2(a+b+c)(a b c)}{a b c^{2}}$, which is $\frac{8^{2}-2 \cdot(-2) \cdot(-7)}{(-7)^{2}}=\frac{36}{49}$. Thus, the answer is $36+49=85$.
4. The rule for divisibility by 9 works in base ten because $10 \equiv 1 \bmod 9$, so $10^{k} \equiv 1 \bmod 9$ for any nonnegative integer k. The value of a generic n-digit whole number $\overline{a_{n-1} a_{n-2} \ldots a_{1} a_{0}}{ }_{10}$ in base ten is $a_{n-1} 10^{n-1}+a_{n-2} 10^{n-2}+\cdots+a_{1} 10^{1}+a_{0} 10^{0}$, which is equivalent to $a_{n-1} \cdot 1+a_{n-2} \cdot 1+\cdots+a_{1} \cdot 1+a_{0} \cdot 1$ modulo 9 , hence the neat divisibility rule. The same trick works in base b if and only if $b \neq 1$ and $b \equiv 1$ $\bmod 9$. Thus, the sum of all such b between 11_{10} and 99_{10} is $19+28+37+\cdots+91=\sum_{k=2}^{10}(9 k+1)=$ $9 \sum_{k=1}^{10} k=\frac{9 \cdot 10 \cdot 11}{2}=495$.
5. The essential observation is $\log _{a}(b) \cdot \log _{b}(a)=1$. Therefore, if we let $f(n)=\log _{n}(2020-n)$, then $f(2020-n)=\frac{1}{f(n)}$, so

$$
\begin{aligned}
\sum_{n=2}^{2018} \frac{2}{1+f(n)} & =\sum_{n=2}^{2018}\left(\frac{1}{1+f(n)}+\frac{1}{1+f(2020-n)}\right)=\sum_{n=2}^{2018}\left(\frac{1}{1+f(n)}+\frac{1}{1+1 / f(n)}\right)=\sum_{n=2}^{2018} \frac{1+f(n)}{1+f(n)} \\
& =\sum_{n=2}^{2018}(1)=2018-2+1=2017
\end{aligned}
$$

6. We can write 99^{99} as $(100-1)^{99}$ and do binomial expansion, so the equation becomes $\binom{99}{0} \cdot 100^{0} \cdot$. $(-1)^{99}+\binom{99}{1} \cdot 100^{1} \cdot(-1)^{98}+\cdots+\binom{99}{99} \cdot 100^{99} \cdot(-1)^{0}$. But the only items that affect the last three digits are the first two items. A simple computation gives us the answer 899 .
7. Note that $a_{3}=11$. For integers $n \geq 4, a_{n}=a_{n-1}+\sum_{k=1}^{n-2} a_{k}=a_{n-1}+a_{n-1}=2 a_{n-1}$. Hence, $a_{n}=2^{n-3} a_{3}$ for $n \geq 3$, so

$$
\sum_{n=1}^{\infty} \frac{1}{a_{n}}=\frac{1}{3}+\frac{1}{8}+\sum_{n=3}^{\infty} \frac{1}{2^{n-3} \cdot 11}=\frac{11}{24}+\frac{1}{11} \sum_{k=0}^{\infty} \frac{1}{2^{k}}=\frac{11}{24}+\frac{2}{11}=\frac{169}{264}
$$

Hence, the answer is $169+264=433$.
8. A quick way to gain some insight is to realize that the setting can be understood as base 3 representation. Using the 6 weights $3^{5}, 3^{4}, 3^{3}, 3^{2}, 3^{1}, 3^{0}$, the maximum number we can represent is 364 , so they are enough to represent until 360 . To prove this is the least number, suppose we have only 5 weights, then because each weight has 3 places to go to: the right side of the pan, the left side, or not on the balance, the maximum number of outcomes is $\left(3^{5}-1\right) / 2=121$, smaller than 360 . So the answer is 6.
9. For completeness, we should first justify that, if p and q are irrational cube roots of rational numbers, then $p+q$ cannot be nonzero and rational. Suppose that $p+q=r$ for some $r \in \mathbb{Q} \backslash\{0\}$. Consider the identity

$$
p^{3}+q^{3}-r^{3}+3 p q r=(p+q-r)\left(p^{2}+q^{2}+r^{2}-p q+p r+q r\right)
$$

which holds even if $p+q \neq r$. In the case $p+q=r$, the above identity simplifies to

$$
p^{3}+q^{3}-r^{3}+3 p q r=0 \Longrightarrow p q=\frac{r^{3}-p^{3}-q^{3}}{3 r} \in \mathbb{Q}
$$

We assumed $p+q$ to be nonzero and rational, and now that $p q$ is also rational, p and q must be the roots of some quadratic with rational coefficients. Specifically, p and q must follow the form $\frac{r \pm \sqrt{s}}{2}$ for some $s \in \mathbb{Q}_{+}$. Then,

$$
(2 p)^{3}=r^{3} \pm 3 r^{2} \sqrt{s}+3 r s \pm s \sqrt{s}=r^{3}+3 r s \pm \sqrt{s}\left(3 r^{2}+s\right) \in \mathbb{Q}
$$

implying \sqrt{s} must be rational. But then p and q must be rational, contradicting the assumption that p and q are irrational.
By direct substitution,

$$
a+b+3 \sqrt[3]{a b}(\sqrt[3]{a}+\sqrt[3]{b})+6 \sqrt[3]{a}+6 \sqrt[3]{b}-2=0
$$

Because $x=\sqrt[3]{a}+\sqrt[3]{b}$ is irrational, the only way for $(3 \sqrt[3]{a b}+6) x$ to be an integer is if $3 \sqrt[3]{a b}+6=0$. This means $a b=-8$ and

$$
x^{3}+6 x-2=a+b+(0)-2=0 \Longrightarrow a+b=2
$$

yielding the obvious solution $a=4$ and $b=-2$ and the answer $100 a+b=398$.
10. The equation above could be factored into $(x-1)\left(x^{59}+x^{58}+\cdots+x+1-k x^{27}\left(x^{2}+x+1\right)\right) \geq 0$. The function is continuous and $(x-1)>0$ for $x>1$. So for $x=1,\left(x^{59}+x^{58}+\cdots+x+1-k x^{27}\left(x^{2}+\right.\right.$ $x+1))=60-3 k \geq 0$. Thus $k \geq 20$. Furthermore, when $a, b>0, a+b \geq 2 \sqrt{a b}$. So, for $x>1$, $x^{59-n}+x^{n} \geq 2 x^{29.5} \geq 2 x^{a}$ where $a \leq 29.5$. Thus, if $k=20,\left(x^{59}+x^{58}+\cdots+x+1 / 20 x^{27}\left(x^{2}+x+1\right)\right) \geq$ $60 x^{29.5}-20 x^{27}\left(x^{2}+x+1\right) \geq 0$, showing that the inequality holds for all $x>1$ when $k=20$.
11. Note that

$$
a_{n+1}=-\frac{\left(a_{n}+1\right)+\left(a_{n}-1\right)}{\left(a_{n}-1\right)\left(a_{n}+1\right)}=\frac{2 a_{n}}{1-a_{n}^{2}}
$$

The key observation is that the resulting expression for a_{n+1} resembles the tangent double-angle identity. If we choose θ so that $a_{n}=\tan \theta$, then $a_{n+1}=\tan 2 \theta$. By induction, if we let $a_{1}=\tan \theta_{1}$, then $a_{n}=\tan \left(2^{n-1} \theta_{1}\right)$. The equality $a_{6}=a_{1}$ therefore occurs when $\left.\tan \theta_{1}=\tan \left(2^{n-1} \theta_{1}\right) \Longrightarrow 2^{5} \theta_{1}\right) \equiv \theta_{1}$ $\bmod \pi \Longrightarrow 31 \theta_{1} \equiv 0 \bmod \pi$. Taking $\theta_{1}=\frac{k \pi}{31}$ for $k \in\{0,1, \ldots, 30\}$ yields 31 distinct values of a_{1}. Because the tangent function has period π, no other values of θ_{1} will generate new values of $\tan \theta_{1}$ other than the 31 values we already have. Thus, there are 31 possible values for a_{1}.
12. The key observation is that the operation \times mimics addition of fractions: $\frac{b}{a}+\frac{d}{c}=\frac{a d+b c}{a c}$. Therefore, x is commutative and associative, and

$$
\frac{b_{n}}{a_{n}}=\sum_{k=2}^{n} \frac{g(k)}{f(k)}=\sum_{k=2}^{n} \frac{(k+1)^{3}-(k-1)^{3}}{k^{2}-1}=\sum_{k=2}^{n}\left(6+4\left(\frac{1}{k-1}-\frac{1}{k+1}\right)\right)
$$

The sum $\sum_{k=2}^{n}\left(\frac{1}{k-1}-\frac{1}{k+1}\right)$ telescopes to $1+\frac{1}{2}-\frac{1}{n}-\frac{1}{n+1}$, so

$$
\frac{b_{n}}{a_{n}}=6(n-1)+4\left(1+\frac{1}{2}-\frac{1}{n}-\frac{1}{n+1}\right)=6 n-\frac{4(2 n+1)}{n(n+1)} \in(6 n-1,6 n) \text { for } n \geq 8
$$

Because 2020 is larger than 8 and not a multiple of 6 , the answer is $n=\lceil 2020 / 6\rceil=2022 / 6=337$.

