Solutions

1. Since rotations don't matter, it doesn't matter where the first person sits. Without loss of generality, assume this person is a man. So the person next to him must be a women, of which there are 4 to choose from. The next seat is a man, of which there are 3 to choose from. So the total number is $4!\cdot 3!=24 \cdot 6=144$.
2. We first calculate the probability where Alexa rolled 3 and had 2 heads then divide that by the probability where Alexa has 2 heads. We first see that the probability that Alexa rolled 3 and had 2 heads is: $\frac{1}{6} \times\binom{ 3}{2} \times\left(\frac{1}{2}\right)^{3}=\frac{1}{16}$ With similar method, we find that the probability that Alexa has 2 heads is $\frac{33}{128}$. Thus probability that alexa rolled 3 becomes $\frac{1}{16} \times \frac{128}{33}=\frac{8}{33}$. Thus, the answer is 41 .
3. Notice that $D(2019)=673$. In order for $D(n)>D(2019)$, we simply require n to be even and $n>1346$. There are 336 such integers, so the answer is $336 / 2019 \Longrightarrow 112 / 673=785$
4. This is called the Gambler's Ruin Problem. The probability is simply $\frac{\text { distance from start to goal }}{\text { total distance }}$ which in this case is $\frac{5}{8}$, so the answer is 13 .
5. Enumerate the days of the week 1 through 7 , and let X_{i} be an indicator random variable for the i th day of the week such that $X_{i}=1$ when at least one student chooses to meet the professor on day i and $X_{i}=0$ otherwise. The probability no students meet the professor that day is $\left(\frac{6}{7}\right)^{5}$, so the expected value of X_{i} is $1-\left(\frac{6}{7}\right)^{5}$. By linearity of expectation, the expected value of $X_{1}+X_{2}+\cdots+X_{7}$ is the sum of the expected values of X_{1} through X_{7}. Thus, the expected number of meeting days is $7\left(1-\left(\frac{6}{7}\right)^{5}\right)=\frac{9031}{2401}$, so 11432 is our answer.
6. First, observe that this problem is equivalent to a random walk starting at $x=7$ and we need to find the probability that it gets to $x=0$ where we move right with 75 percent probability and left with 25 percent probability. We first solve for q_{1}, the absorption probability starting at $x=1$. We obtain the quadratic $3 x^{2}-4 x+1=0$. Solving for x over the interval $[0,1]$ yields $x=1 / 3$. to compute q_{7}, we have $(1 / 3)^{7}=1 / 3^{7}$, so the answer is $1+2187=2188$.
7. Label the starting vertex v_{1}, the vertices of distance 1 away from the v_{1} as v_{2}, v_{4}, v_{6}, the vertices of distance 2 away as vertices v_{3}, v_{5}, v_{7} and finally the terminating vertex as v_{8}. We will also use this notation to denote the expected number of moves until v_{i} is reached. We obtain that $v_{1}=$ $1+\frac{1}{3}\left(v_{2}+v_{4}+v_{6}\right)$ and get similar equations for v_{2}, \ldots, v_{7}. Clearly $v_{8}=0$ since we have finished once v_{8} is obtained. Note further that $v_{2}=v_{4}=v_{6}$ and $v_{3}=v_{5}=v_{7}$ since they are all the same distance from both the starting and ending vertices. We eventually obtain that $v_{1}=10$.
8. Suppose instead that Samantha initializes $a_{1}=n+1$ for any $n \in \mathbb{N} \cup\{0\}$. Let P_{n} be the probability that, after setting $a_{1}=n+1$, Samantha generates subsequent terms that have an odd sum (this sum includes every term in the sequence except a_{1}). Evidently, $P_{0}=0, P_{1}=1$, and $P_{2}=1$. In general, after Samantha selects a value k for a_{2}, the problem reduces to the case for P_{k-1}, in which the next sequence value can range from 1 to $k-1$. Specifically, the probability that $a_{2}+a_{3}+\cdots+1$ is odd is $1-P_{k-1}$ if k is odd and P_{k-1} if k is even (this is because odd values of a_{2} switch the parity of the sum). Thus,

$$
\begin{gathered}
P_{2 n+1}=\frac{1}{2 n+1}\left(\left(1-P_{2 n}\right)+P_{2 n-1}+\left(1-P_{2 n-2}\right)+P_{2 n-3}+\cdots+\left(1-P_{0}\right)\right) \text { and } \\
P_{2 n+2}=\frac{1}{2 n+2}\left(P_{2 n+1}+\left(1-P_{2 n}\right)+P_{2 n-1}+\left(1-P_{2 n-2}\right)+\cdots+\left(1-P_{0}\right)\right) .
\end{gathered}
$$

We notice some interesting relationships:

$$
P_{2 n+2}=\frac{1}{2 n+2}\left(P_{2 n+1}+(2 n+1) P_{2 n+1}\right)=P_{2 n+1} \text {, so }
$$

$$
\begin{aligned}
P_{2 n+1} & =\frac{1}{2 n+1}\left(\left(1-P_{2 n-1}\right)+P_{2 n-1}+\left(1-P_{2 n-3}\right)+P_{2 n-3}+\cdots+\left(1-P_{1}\right)+P_{1}+\left(1-P_{0}\right)\right) \\
& =\frac{1}{2 n+1}\left(1-P_{0}+\sum_{k=1}^{n}\left(\left(1-P_{2 k-1}\right)+P_{2 k-1}\right)\right)=\frac{1}{2 n+1}\left(1+\sum_{k=1}^{n} 1\right)=\frac{n+1}{2 n+1} \cdot
\end{aligned}
$$

Hence, $P_{2 n+2}=P_{2 n+1}=\frac{n+1}{2 n+1}$. For the problem at hand, we care about $a_{1}=2019$, which flips the parity of the sequence sum. The chance of the whole sequence sum being odd is the chance that $\left\{a_{2}, a_{3}, \ldots, 1\right\}$ has an even sum, which is $1-P_{2018}=1-\frac{1009}{2017}=\frac{1008}{2017}$, so the answer is $1008+2017=$ 3025 .
9. 57 . Check out the solution at http://www.math. wayne.edu/~danf/talks/CF.pdf
10. The diagram for this problem is a bipartite graph, in which the vertices can be split into two sets A and B such that no edges connect any two vertices in the same set. We generalize the solution to a bipartite graph with $|A|=|B|=n$ in which every vertex in A is connected to every vertex in B (and thus every vertex in B is connected to every vertex in A). Let $A=\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$ and $B=\left\{B_{1}, B_{2}, \ldots, B_{n}\right\}$, where we arbitrarily label the vertices in each set with indices from 1 to n. To make a cycle of length m (which is called an m-cycle), we must create a path over m distinct vertices that ends where it starts. Because the graph is bipartite, at each step in the path, we alternate from a vertex in A to a vertex in B or from a vertex in B to a vertex in A. In order to start and end at the same set, the cycle length must be even. Every $2 k$-cycle we count will have k vertices in A and k vertices in B. There are $\binom{n}{k}$ ways to select the k vertices from A and $\binom{n}{k}$ ways to select the k vertices from B. Because the cycle is a loop, it is independent of whichever vertex we "start" our path at, so we arbitrarily fix one vertex $A_{i_{1}}$ to "begin" the cycle. The remaining $k-1$ vertices from A have $(k-1)$! ways to be ordered in the path sequence, and the k vertices from B have k ! ways to be ordered. Our current count is $\binom{n}{k}^{2}(k-1)!k!=\frac{(n!)^{2}}{(k!)^{2}((n-k)!)^{2}} \cdot \frac{(k!)^{2}}{k}=\frac{(n!)^{2}}{k((n-k)!)^{2}}$. Observe that this count treats the paths $\left\{A_{i_{1}}, B_{i_{2}}, A_{i_{3}}, \ldots, A_{i_{2 k-1}}, B_{i_{2 k}}\right\}$ and $\left\{A_{i_{1}}, B_{i_{2 k}}, A_{i_{2 k-1}}, \ldots, A_{i_{3}}, B_{i_{2}}\right\}$ as distinct cycles. We know that, in reality, the cycle loops are undirected, so reversing the direction in which we traverse the path does not produce a new cycle. Thus, our current count is an exact double count for the number of $2 k$-cycles, so the correct count is

$$
\frac{(n!)^{2}}{2 k((n-k)!)^{2}}
$$

The smallest loop we can have is a 4 -cycle, from $k=2$, and the largest loop we can have is a $2 n$-cycle, from $k=n$. Therefore, the answer is

$$
\sum_{k=2}^{n} \frac{(n!)^{2}}{2 k((n-k)!)^{2}} ; \quad{ }^{2 / 3} n=4 \sum_{k=2}^{n} \frac{(n!)^{2}}{2 k((n-k)!)^{2}}=204 \text {. }
$$

