Y.

N.

No.

Yu

Y.

Y.

Withte the the the

柳林海绵

Solutions

- R 191. Since rotations don't matter, it doesn't matter where the first person sits. Without loss of generality, assume this person is a man. So the person next to him must be a women, of which there are 4 to choose from. The next seat is a man, of which there are 3 to choose from. So the total number is $4! \cdot 3! = 24 \cdot 6 = |144|.$
 - 2. We first calculate the probability where Alexa rolled 3 and had 2 heads then divide that by the probability where Alexa has 2 heads. We first see that the probability that Alexa rolled 3 and had 2 heads is: $\frac{1}{6} \times {\binom{3}{2}} \times {(\frac{1}{2})^3} = \frac{1}{16}$ With similar method, we find that the probability that Alexa has 2 heads is $\frac{33}{128}$. Thus probability that alexa rolled 3 becomes $\frac{1}{16} \times \frac{128}{33} = \frac{8}{33}$. Thus, the answer is 41
 - 3. Notice that D(2019) = 673. In order for D(n) > D(2019), we simply require n to be even and n > 1346. There are 336 such integers, so the answer is $336/2019 \implies 112/673 = 785$
 - 4. This is called the Gambler's Ruin Problem. The probability is simply $\frac{\text{distance from start to goal}}{\text{total distance}}$ which in % total distance this case is $\frac{5}{8}$, so the answer is 13.
 - 5. Enumerate the days of the week 1 through 7, and let X_i be an indicator random variable for the *i*th day of the week such that $X_i = 1$ when at least one student chooses to meet the professor on day i and $X_i = 0$ otherwise. The probability no students meet the professor that day is $\left(\frac{6}{7}\right)^5$, so the expected value of X_i is $1 - \left(\frac{6}{7}\right)^5$. By linearity of expectation, the expected value of $X_1 + X_2 + \cdots + X_7$ is the sum of the expected values of X_1 through X_7 . Thus, the expected number of meeting days is $7\left(1-\left(\frac{6}{7}\right)^5\right) = \frac{9031}{2401}$, so 11432 is our answer.
 - 6. First, observe that this problem is equivalent to a random walk starting at x = 7 and we need to find the probability that it gets to x = 0 where we move right with 75 percent probability and left with 25 percent probability. We first solve for q_1 , the absorption probability starting at x = 1. We obtain the quadratic $3x^2 - 4x + 1 = 0$. Solving for x over the interval [0, 1] yields x = 1/3. to compute q_7 , we have $(1/3)^7 = 1/3^7$, so the answer is 1 + 2187 = 2188
 - 7. Label the starting vertex v_1 , the vertices of distance 1 away from the v_1 as v_2, v_4, v_6 , the vertices of distance 2 away as vertices v_3, v_5, v_7 and finally the terminating vertex as v_8 . We will also use this notation to denote the expected number of moves until v_i is reached. We obtain that $v_1 =$ $1 + \frac{1}{3}(v_2 + v_4 + v_6)$ and get similar equations for $v_2, ..., v_7$. Clearly $v_8 = 0$ since we have finished once v_8 is obtained. Note further that $v_2 = v_4 = v_6$ and $v_3 = v_5 = v_7$ since they are all the same distance from both the starting and ending vertices. We eventually obtain that $v_1 = |10|$.
- 8. Suppose instead that Samantha initializes $a_1 = n + 1$ for any $n \in \mathbb{N} \cup \{0\}$. Let P_n be the probability that, after setting $a_1 = n + 1$, Samantha generates subsequent terms that have an odd sum (this sum includes every term in the sequence except a_1). Evidently, $P_0 = 0$, $P_1 = 1$, and $P_2 = 1$. In general, after Samantha selects a value k for a_2 , the problem reduces to the case for P_{k-1} , in which the next sequence value can range from 1 to k-1. Specifically, the probability that $a_2 + a_3 + \cdots + 1$ is odd is $1 - P_{k-1}$ if k is odd and P_{k-1} if k is even (this is because odd values of a_2 switch the parity of the 化物林 法 sum). Thus, 1/2 8/0 stitute #

$$P_{2n+1} = \frac{1}{2n+1} \left((1-P_{2n}) + P_{2n-1} + (1-P_{2n-2}) + P_{2n-3} + \dots + (1-P_0) \right) \text{ and }$$
$$P_{2n+2} = \frac{1}{2n+2} \left(P_{2n+1} + (1-P_{2n}) + P_{2n-1} + (1-P_{2n-2}) + \dots + (1-P_0) \right).$$

We notice some interesting relationships: stitute the the the

柳林、海、邻

Astitute ####

1. W. W. B.

$$P_{2n+2} = \frac{1}{2n+2} \left(P_{2n+1} + (2n+1)P_{2n+1} \right) = P_{2n+1}$$
, so

 $\mathbf{2}$

物水

mistime ### JHMT 2019

Ro

N.

N.

Yu

Y.

80

$$P_{2n+1} = \frac{1}{2n+1} \left((1-P_{2n-1}) + P_{2n-1} + (1-P_{2n-3}) + P_{2n-3} + \dots + (1-P_1) + P_1 + (1-P_0) \right)$$
$$= \frac{1}{2n+1} \left(1 - P_0 + \sum_{k=1}^n \left((1-P_{2k-1}) + P_{2k-1} \right) \right) = \frac{1}{2n+1} \left(1 + \sum_{k=1}^n 1 \right) = \frac{n+1}{2n+1}.$$

Institute # # 'S Hence, $P_{2n+2} = P_{2n+1} = \frac{n+1}{2n+1}$. For the problem at hand, we care about $a_1 = 2019$, which flips the parity of the sequence sum. The chance of the whole sequence sum being odd is the chance that $\{a_2, a_3, \dots, 1\}$ has an even sum, which is $1 - P_{2018} = 1 - \frac{1009}{2017} = \frac{1008}{2017}$, so the answer is $1008 + 2017 = \frac{1008}{2017}$ 3025

- 9. 57. Check out the solution at http://www.math.wayne.edu/~danf/talks/CF.pdf.
- 10. The diagram for this problem is a bipartite graph, in which the vertices can be split into two sets A and B such that no edges connect any two vertices in the same set. We generalize the solution to a bipartite graph with |A| = |B| = n in which every vertex in A is connected to every vertex in B (and thus every vertex in B is connected to every vertex in A). Let $A = \{A_1, A_2, \ldots, A_n\}$ and $B = \{B_1, B_2, \dots, B_n\}$, where we arbitrarily label the vertices in each set with indices from 1 to n. To make a cycle of length m (which is called an m-cycle), we must create a path over m distinct vertices that ends where it starts. Because the graph is bipartite, at each step in the path, we alternate from a vertex in A to a vertex in B or from a vertex in B to a vertex in A. In order to start and end at the same set, the cycle length must be even. Every 2k-cycle we count will have k vertices in A and k vertices in B. There are $\binom{n}{k}$ ways to select the k vertices from A and $\binom{n}{k}$ ways to select the k vertices from B. Because the cycle is a loop, it is independent of whichever vertex we "start" our path at, so we arbitrarily fix one vertex A_{i_1} to "begin" the cycle. The remaining $k \to 1$ vertices from A have (k-1)! ways to be ordered in the path sequence, and the k vertices from B have k! ways to be ordered. Our current count is $\binom{n}{k}^2 (k-1)! k! = \frac{(n!)^2}{(k!)^2 ((n-k)!)^2} \cdot \frac{(k!)^2}{k} = \frac{(n!)^2}{k((n-k)!)^2}$. Observe that this count treats the paths $\{A_{i_1}, B_{i_2}, A_{i_3}, \dots, A_{i_{2k-1}}, B_{i_{2k}}\}$ and $\{A_{i_1}, B_{i_{2k}}, A_{i_{2k-1}}, \dots, A_{i_3}, B_{i_2}\}$ as distinct cycles. We know that, in reality, the cycle loops are undirected, so reversing the direction in which we traverse the path does not produce a new cycle. Thus, our current count is an exact double count for the number of 2k-cycles, so the correct count is matitute ## $\frac{(n!)^2}{2k((n-k)!)^2}.$

The smallest loop we can have is a 4-cycle, from k = 2, and the largest loop we can have is a 2n-cycle, from k = n. Therefore, the answer is

