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Solutions

1. Since rotations don’t matter, it doesn’t matter where the first person sits. Without loss of generality,
assume this person is a man. So the person next to him must be a women, of which there are 4 to
choose from. The next seat is a man, of which there are 3 to choose from. So the total number is
4! · 3! = 24 · 6 = 144 .

2. We first calculate the probability where Alexa rolled 3 and had 2 heads then divide that by the
probability where Alexa has 2 heads. We first see that the probability that Alexa rolled 3 and had 2
heads is: 1

6 ×
(
3
2

)
× ( 1

2 )3 = 1
16 With similar method, we find that the probability that Alexa has 2 heads

is 33
128 . Thus probability that alexa rolled 3 becomes 1

16 ×
128
33 = 8

33 . Thus, the answer is 41 .

3. Notice that D(2019) = 673. In order for D(n) > D(2019), we simply require n to be even and n > 1346.

There are 336 such integers, so the answer is 336/2019 =⇒ 112/673 = 785

4. This is called the Gambler’s Ruin Problem. The probability is simply distance from start to goal
total distance which in

this case is 5
8 , so the answer is 13 .

5. Enumerate the days of the week 1 through 7, and let Xi be an indicator random variable for the ith
day of the week such that Xi = 1 when at least one student chooses to meet the professor on day i and

Xi = 0 otherwise. The probability no students meet the professor that day is
(
6
7

)5
, so the expected

value of Xi is 1 −
(
6
7

)5
. By linearity of expectation, the expected value of X1 + X2 + · · · + X7 is

the sum of the expected values of X1 through X7. Thus, the expected number of meeting days is

7
(

1−
(
6
7

)5)
= 9031

2401 , so 11432 is our answer.

6. First, observe that this problem is equivalent to a random walk starting at x = 7 and we need to find
the probability that it gets to x = 0 where we move right with 75 percent probability and left with 25
percent probability. We first solve for q1, the absorption probability starting at x = 1. We obtain the
quadratic 3x2 − 4x + 1 = 0. Solving for x over the interval [0, 1] yields x = 1/3. to compute q7, we

have (1/3)7 = 1/37, so the answer is 1 + 2187 = 2188 .

7. Label the starting vertex v1, the vertices of distance 1 away from the v1 as v2, v4, v6, the vertices
of distance 2 away as vertices v3, v5, v7 and finally the terminating vertex as v8. We will also use
this notation to denote the expected number of moves until vi is reached. We obtain that v1 =
1 + 1

3 (v2 + v4 + v6) and get similar equations for v2, ..., v7. Clearly v8 = 0 since we have finished once
v8 is obtained. Note further that v2 = v4 = v6 and v3 = v5 = v7 since they are all the same distance
from both the starting and ending vertices. We eventually obtain that v1 = 10 .

8. Suppose instead that Samantha initializes a1 = n + 1 for any n ∈ N ∪ {0}. Let Pn be the probability
that, after setting a1 = n + 1, Samantha generates subsequent terms that have an odd sum (this sum
includes every term in the sequence except a1). Evidently, P0 = 0, P1 = 1, and P2 = 1. In general,
after Samantha selects a value k for a2, the problem reduces to the case for Pk−1, in which the next
sequence value can range from 1 to k − 1. Specifically, the probability that a2 + a3 + · · ·+ 1 is odd is
1 − Pk−1 if k is odd and Pk−1 if k is even (this is because odd values of a2 switch the parity of the
sum). Thus,

P2n+1 =
1

2n + 1
((1− P2n) + P2n−1 + (1− P2n−2) + P2n−3 + · · ·+ (1− P0)) and

P2n+2 =
1

2n + 2
(P2n+1 + (1− P2n) + P2n−1 + (1− P2n−2) + · · ·+ (1− P0)) .

We notice some interesting relationships:

P2n+2 =
1

2n + 2
(P2n+1 + (2n + 1)P2n+1) = P2n+1, so
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P2n+1 =
1

2n + 1
((1− P2n−1) + P2n−1 + (1− P2n−3) + P2n−3 + · · ·+ (1− P1) + P1 + (1− P0))

=
1

2n + 1

(
1− P0 +

n∑
k=1

((1− P2k−1) + P2k−1)

)
=

1

2n + 1

(
1 +

n∑
k=1

1

)
=

n + 1

2n + 1
.

Hence, P2n+2 = P2n+1 = n+1
2n+1 . For the problem at hand, we care about a1 = 2019, which flips the

parity of the sequence sum. The chance of the whole sequence sum being odd is the chance that
{a2, a3, . . . , 1} has an even sum, which is 1− P2018 = 1− 1009

2017 = 1008
2017 , so the answer is 1008 + 2017 =

3025 .

9. 57 . Check out the solution at http://www.math.wayne.edu/~danf/talks/CF.pdf.

10. The diagram for this problem is a bipartite graph, in which the vertices can be split into two sets
A and B such that no edges connect any two vertices in the same set. We generalize the solution
to a bipartite graph with |A| = |B| = n in which every vertex in A is connected to every vertex in
B (and thus every vertex in B is connected to every vertex in A). Let A = {A1, A2, . . . , An} and
B = {B1, B2, . . . , Bn}, where we arbitrarily label the vertices in each set with indices from 1 to n. To
make a cycle of length m (which is called an m-cycle), we must create a path over m distinct vertices
that ends where it starts. Because the graph is bipartite, at each step in the path, we alternate from
a vertex in A to a vertex in B or from a vertex in B to a vertex in A. In order to start and end at
the same set, the cycle length must be even. Every 2k-cycle we count will have k vertices in A and k
vertices in B. There are

(
n
k

)
ways to select the k vertices from A and

(
n
k

)
ways to select the k vertices

from B. Because the cycle is a loop, it is independent of whichever vertex we “start” our path at,
so we arbitrarily fix one vertex Ai1 to “begin” the cycle. The remaining k − 1 vertices from A have
(k−1)! ways to be ordered in the path sequence, and the k vertices from B have k! ways to be ordered.

Our current count is
(
n
k

)2
(k − 1)!k! = (n!)2

(k!)2((n−k)!)2 ·
(k!)2

k = (n!)2

k((n−k)!)2 . Observe that this count treats

the paths
{
Ai1 , Bi2 , Ai3 , . . . , Ai2k−1

, Bi2k

}
and

{
Ai1 , Bi2k , Ai2k−1

, . . . , Ai3 , Bi2

}
as distinct cycles. We

know that, in reality, the cycle loops are undirected, so reversing the direction in which we traverse the
path does not produce a new cycle. Thus, our current count is an exact double count for the number
of 2k-cycles, so the correct count is

(n!)2

2k((n− k)!)2
.

The smallest loop we can have is a 4-cycle, from k = 2, and the largest loop we can have is a 2n-cycle,
from k = n. Therefore, the answer is

n∑
k=2

(n!)2

2k((n− k)!)2
; n = 4 =⇒

n∑
k=2

(n!)2

2k((n− k)!)2
= 204 .
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