Solutions

1. 9 .
2. The area cut out of the pizza is $100 \arccos \left(\frac{4}{5}\right)-48$ square inches, so the answer is 3840 .
3. The answer is $4-\sqrt{3}-\frac{2 \pi}{3}$. Thus, $4 \times 3 \times 2 \times 3=72$.
4. 14 .
5. 40 .
6. We conclude that $a=\frac{3 \sqrt{3}}{2}$, so the answer is 332 .
7. The desired ratio is $4: 25: 21$, so the answer is $4+25+21=50$.
8. The locus of all possible locations of P is an arc of a circle, so let's define ω as the circumcircle of $\triangle P B C$. Specifically, a 135° angle inscribed in a circle intercepts a 270° arc, meaning the locus of all P is a 90° arc. Also, note that $\triangle A B C$ is isosceles, with $A B=A C$. Because the measure of $\widehat{B P C}$ plus the measure of $\angle A$ is $90^{\circ}+90^{\circ}=180^{\circ}$ and because $A B=A C, \overline{A B}$ and $\overline{A C}$ are tangent to ω at B and C, respectively. Reflecting A over line $\overleftrightarrow{B C}$ gives O, the center of ω. Because $A B O C$ is a square, the radius of ω equals $A B$ and $A C$. Letting r denote the radius, we have $A B=A C=O B=O C=O P=r$. If $\triangle P A C$ is isosceles, then either $P A=P C$ or $C P=C A$.
In the first case, P lies on the perpendicular bisector of $\overline{A C}$, meaning P lies $\frac{r}{2}$ away from $\overline{O C}$. Suppose D is the point on $\overline{O C}$ closest to $P . \triangle D P O$ is a right triangle with hypotenuse r and leg $\frac{r}{2}$, so the longer leg is $O D=\frac{r \sqrt{3}}{2}$ by the Pythagorean Theorem. Then, letting M be the midpoint of $\overline{A C}$, $P M=D C=r\left(\frac{2-\sqrt{3}}{2}\right)$. Therefore, $\tan \angle P A C=\frac{r(2-\sqrt{3}) / 2}{r / 2}=2-\sqrt{3}$.
Now, notice that forcing $P A=P C$ in the first case forces $P B=P O=r$. Therefore, $\triangle P A B$ and $\triangle P A C$ are simultaneously isosceles, and simply interchanging B with C gives us our second case. Doing this makes the new $\angle P A C$ the complement of the old $\angle P A C$ that is now $\angle P A B$. Since $\tan \angle P A B$ is now $2-\sqrt{3}, \tan \angle P A C=\frac{1}{2-\sqrt{3}}=2+\sqrt{3}$. Of these two options, $2+\sqrt{3}$ is the larger value of $\tan \angle P A C$, so we use $s=2, t=1$, and $u=3$ to obtain the answer 213 .
9. Quadrilateral $A B E C$ is cyclic, so $\mathrm{m} \angle A B E=180^{\circ}-\mathrm{m} \angle A C E$. Since $\mathrm{m} \angle A B E$ also equals $180^{\circ}-$ $\mathrm{m} \angle A B P$, we see that $\angle A B P \cong \angle A C E$ and thus $\triangle A B P \sim \triangle A C Q$ by angle-angle similarity. This means that $\angle B A X \cong \angle C A Y$, so $B X=C Y$, and therefore $B X C Y$ is an isosceles trapezoid. Since the diagonals of any isosceles trapezoid are equal, $X Y=B C=69$.
10. Let N be the intersection of the perpendicular bisector of $\overline{Q R}$ with $\overline{P Q}$. Then, $N Q=N R$ and $\mathrm{m} \angle Q=$ $\mathrm{m} \angle Q R N$, so $\mathrm{m} \angle P R N=10^{\circ}$. Because $\overleftarrow{N M}$ is the perpendicular bisector of $\overline{Q R}, \mathrm{~m} \angle N M Q=90^{\circ}$, and because $\mathrm{m} \angle P M Q=100^{\circ}, \mathrm{m} \angle P M N=10^{\circ}$. Observe that $\angle P R N \cong \angle P M N$, so $P R M N$ is cyclic. Then, $\mathrm{m} \angle P=180^{\circ}-\mathrm{m} \angle R M N=90^{\circ}$, so $\mathrm{m} \angle Q+\mathrm{m} \angle R=90^{\circ}$. Because $\mathrm{m} \angle R=\mathrm{m} \angle Q+10^{\circ}$, we obtain $\mathrm{m} \angle Q=40^{\circ}$.
