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Solutions
1. We have

∫ 19

20
dx = [x]

19
20 = 19− 20 = −1 .

2. Letting L = lim
x→0+

(cosx)ln x, we have lnL = lim
x→0+

lnx ln cosx = lim
x→0+

ln cos x
1/ ln x . We apply L’Hopital’s

rule: lnL = lim
x→0+

− tan x
−1/(x ln2 x)

= lim
x→0+

x tanx ln2 x. For nonnegative integers n, let f(n) = lim
x→0+

x lnn x.

Observe that f(0) = 0 and, for n > 0, f(n) = lim
x→0+

lnn x
1/x =

(n lnn−1 x)·(1/x)
−1/x2 = −n lim

x→0+
x lnn−1 x =

−nf(n− 1). It follows that f(n) = 0 for all n, so lnL = tan(0) · f(2) = 0 =⇒ L = 1 .

3. Let f(x) =
∞∑
n=0

xn+3

(n+3)·n! so that f ′(x) =
∞∑
n=0

xn+2

n! = x2
∞∑
n=0

xn

n! = x2ex. Observe that f(0) = 0. Then,

∞∑
n=0

1

(n+ 3) · n!
= f(1) = f(0) +

∫ 1

0

t2et dt = 0 +
[
et
(
t2 − 2t+ 2

)]1
0

= e− 2 ≈ 0.71828,

so the answer is b100(e− 2)c = 71 .

4. Note that
∞∑
n=2

3n2 + 3n+ 1

(n2 + n)3

can be rewritten as
∞∑
n=2

1

n3
−
∞∑
n=2

1

(n+ 1)3
=

1

8
,

so the answer is 8 + 1 = 9 .

5. Let u = ex − 1 and du = exdx so that

4

∫ ln 5

ln 3

e3x

e2x − 2ex + 1
dx = 4

∫ 4

2

(u+ 1)2

u2
du = 4

∫ 4

2

(
1 +

2

u
+

1

u2

)
du = 4

[
u+ 2 ln |u| − 1

u

]4
2

= 4

(
4− 1

4
− 2 +

1

2
+ 2 (ln 4− ln 2)

)
= 9 + 8 ln 2.

The answer is therefore 9 + 8 = 17 .

6. For positive integers n, we have (2n)!! =
n∏
k=1

2k = 2n
n∏
k=1

k = 2n · n!. Observe that (2n)!! = 2n · n! also

holds for n = 0. Thus,

∞∑
n=0

1

(2n)!!
=
∞∑
n=0

1

2n · n!
=
∞∑
n=0

(1/2)n

n!
= e1/2 =

4
√
e2,

where we used the Maclaurin series ex =
∞∑
n=0

xn

n! . Because 2.7 < e < 2.8, 7.29 < e2 < 7.84, so q = 7 .

7. Taking the natural logarithm of both sides of xy = yx yields x ln y = y lnx =⇒ ln y
y = ln x

x . We use
implicit differentiation:

1
y · y − 1 · ln y

y2
dy

dx
=

1
x · x− 1 · lnx

x2
=⇒ dy

dx
=
(y
x

)2 1− lnx

1− ln y
.

When x = 4, we have y = 2 because 42 = 24, so

f ′(4) =
1

22
· 1− ln 4

1− ln 2
=

1− 2 ln 2

4− 4 ln 2
=
−1 + 2− 2 ln 2

4− 4 ln 2
=

1

2
− 1

4− ln 16
=⇒ a+ b+ c = 2 + 4 + 16 = 22 .
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8. Let a be the positive real number such that the circle of radius 4 is tangent to the curve of y = x2

at the points P
(
−a, a2

)
and Q

(
a, a2

)
, and let C be the center of the circle. The slope of the line

tangent to y = x2 at x = a is d
dxx

2
∣∣
x=a

= 2a, so the slope of QC is − 1
2a because QC is perpendicular

to the tangent line. The y-coordinate of C is therefore − 1
2a (−a) = 1

2 larger than the y-coordinate of
Q. Since Q =

(
a, a2

)
, we conclude that C =

(
0, a2 + 1

2

)
. Let R =

(
0, a2

)
. Note that 4CQR is a right

triangle with legs a and 1
2 and a hypotenuse of 4 (the circle’s radius). By the Pythagorean theorem,

a2 = 42 − 1
22 = 63

4 , so p
q = 63

4 + 1
2 = 65

4 , yielding p+ q = 65 + 4 = 69 .

9. We generalize this problem to a cylinder of radius R and a string of length Rπ with one end pinned
at (x, y) = (R, 0). Let S be the circular base of the cylinder. Clearly, the string can sweep out a
semicircle to the right of the line x = R with radius Rπ, whose area is 1

2R
2π3. The remaining area

that the string can cover is swept out as the string wraps around S in either direction; the farthest the
string can wrap is (−R, 0), covering half the circumference of S, or Rπ, the full length of the string.
Using the parameter θ ∈ (0, π], we let (x(θ), y(θ)) be the position of the free end of the string when it
is wrapped around θ radians of S (in a counterclockwise direction) and the remainder of the string is
taut and lies along the line tangent to S at (R cos θ,R sin θ). If Rθ is the length of the wrapped portion
of the string, then R (π − θ) is the length of the straight portion. The slope of the straight portion is
− cos θ

sin θ , so (x(θ), y(θ)) = (R cos θ − R(π − θ) sin θ,R sin θ + R(π − θ) cos θ). The area above the x-axis
bounded by the curve of all (x(θ), y(θ)) for 0 < θ ≤ π is given by

A =
1

2

∫ π

0

√
x2(θ) + y2(θ)

(√
x2(θ) + y2(θ) dθ

)
=
R2

2

∫ π

0

(
cos2 θ + (π − θ)2 sin2 θ − 2(π − θ) cos θ sin θ + sin2 θ + (π − θ)2 cos2 θ + 2(π − θ) sin θ cos θ

)
dθ

=
R2

2

∫ π

0

(
1 + (π − θ)2

)
dθ =

R2

2

∫ π

0

(
1 + u2

)
du =

R2

2

(
π +

π3

3

)
.

This area measure includes the area of the half of S that lies above the x-axis, which is π
2R

2. Thus, the

string sweeps out an area of A− π
2R

2 = R2π3

6 above the x-axis and to the left of x = R. By symmetry,
the same area is swept out below the x-axis and to the left of x = R. Adding these two areas to the
initial semicircular area yields the total area,

2 · R
2π3

6
+
R2π3

2
=

5R2π3

6
.

Taking R = 6 makes the area 30π3, giving m = 30 .

10. Because AB = 2, AC + CB = 10. A and B are fixed points, so the locus of points C such that

AC+CB = 10 is an ellipse with foci A and B. Suppose that this ellipse has the equation x2

a2 + y2

b2 = 1;

let g(x, y) = x2

a2 + y2

b2 . To maximize f(x, y) = x + y over the curve g(x, y) = 1, we can use Lagrange
Multipliers, which states that critical points (x?, y?) of f over the curve g(x, y) = 1 satisfy

∇f (x?, y?) ∝ ∇g (x?, y?) .

Since ∇f(x, y) = 〈1, 1〉 and ∇g(x, y) =
〈
2x
a2 ,

2y
b2

〉
, we have x?

a2 = y?

b2 =⇒ x? = y?a2

b2 =⇒ 1 =

y?2
(
a2

b4 + 1
b2

)
=⇒ y? = ± b2√

a2+b2
and x? = ± a2√

a2+b2
. Clearly, taking both x? and y? to be positive

will make the extremum of f at (x?, y?) a maximum, so the maximum possible value of x+ y is

a2 + b2√
a2 + b2

=
√
a2 + b2.

Note that the points (a, 0) and (0, b) lie on the ellipse of interest. In our case, this means that

(a−1)+(a+1) = 10 and 2
√

1 + b2 = 10, so we get a = 5, b =
√

24, and max(x+y) =

√
52 +

√
24

2
= 7 .
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