Solutions

1. We have $\int_{20}^{19} d x=[x]_{20}^{19}=19-20=-1$.
2. Letting $L=\lim _{x \rightarrow 0^{+}}(\cos x)^{\ln x}$, we have $\ln L=\lim _{x \rightarrow 0^{+}} \ln x \ln \cos x=\lim _{x \rightarrow 0^{+}} \frac{\ln \cos x}{1 / \ln x}$. We apply L'Hopital's rule: $\ln L=\lim _{x \rightarrow 0^{+}} \frac{-\tan x}{-1 /\left(x \ln ^{2} x\right)}=\lim _{x \rightarrow 0^{+}} x \tan x \ln ^{2} x$. For nonnegative integers n, let $f(n)=\lim _{x \rightarrow 0^{+}} x \ln ^{n} x$. Observe that $f(0)=0$ and, for $n>0, f(n)=\lim _{x \rightarrow 0^{+}} \frac{\ln ^{n} x}{1 / x}=\frac{\left(n \ln ^{n-1} x\right) \cdot(1 / x)}{-1 / x^{2}}=-n \lim _{x \rightarrow 0^{+}} x \ln ^{n-1} x=$ $-n f(n-1)$. It follows that $f(n)=0$ for all n, so $\ln L=\tan (0) \cdot f(2)=0 \Longrightarrow L=1$.
3. Let $f(x)=\sum_{n=0}^{\infty} \frac{x^{n+3}}{(n+3) \cdot n!}$ so that $f^{\prime}(x)=\sum_{n=0}^{\infty} \frac{x^{n+2}}{n!}=x^{2} \sum_{n=0}^{\infty} \frac{x^{n}}{n!}=x^{2} e^{x}$. Observe that $f(0)=0$. Then,

$$
\sum_{n=0}^{\infty} \frac{1}{(n+3) \cdot n!}=f(1)=f(0)+\int_{0}^{1} t^{2} e^{t} d t=0+\left[e^{t}\left(t^{2}-2 t+2\right)\right]_{0}^{1}=e-2 \approx 0.71828,
$$

so the answer is $\lfloor 100(e-2)\rfloor=71$.
4. Note that

$$
\sum_{n=2}^{\infty} \frac{3 n^{2}+3 n+1}{\left(n^{2}+n\right)^{3}}
$$

can be rewritten as

$$
\sum_{n=2}^{\infty} \frac{1}{n^{3}}-\sum_{n=2}^{\infty} \frac{1}{(n+1)^{3}}=\frac{1}{8}
$$

so the answer is $8+1=9$.
5. Let $u=e^{x}-1$ and $d u=e^{x} d x$ so that

$$
\begin{aligned}
& 4 \int_{\ln 3}^{\ln 5} \frac{e^{3 x}}{e^{2 x}-2 e^{x}+1} d x=4 \int_{2}^{4} \frac{(u+1)^{2}}{u^{2}} d u=4 \int_{2}^{4}\left(1+\frac{2}{u}+\frac{1}{u^{2}}\right) d u=4\left[u+2 \ln |u|-\frac{1}{u}\right]_{2}^{4} \\
&=4\left(4-\frac{1}{4}-2+\frac{1}{2}+2(\ln 4-\ln 2)\right)=9+8 \ln 2
\end{aligned}
$$

The answer is therefore $9+8=17$.
6. For positive integers n, we have $(2 n)!!=\prod_{k=1}^{n} 2 k=2^{n} \prod_{k=1}^{n} k=2^{n} \cdot n!$. Observe that $(2 n)!!=2^{n} \cdot n$! also holds for $n=0$. Thus,

$$
\sum_{n=0}^{\infty} \frac{1}{(2 n)!!}=\sum_{n=0}^{\infty} \frac{1}{2^{n} \cdot n!}=\sum_{n=0}^{\infty} \frac{(1 / 2)^{n}}{n!}=e^{1 / 2}=\sqrt[4]{e^{2}}
$$

where we used the Maclaurin series $e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$. Because $2.7<e<2.8,7.29<e^{2}<7.84$, so $q=7$.
7. Taking the natural logarithm of both sides of $x^{y}=y^{x}$ yields $x \ln y=y \ln x \Longrightarrow \frac{\ln y}{y}=\frac{\ln x}{x}$. We use implicit differentiation:

$$
\frac{\frac{1}{y} \cdot y-1 \cdot \ln y}{y^{2}} \frac{d y}{d x}=\frac{\frac{1}{x} \cdot x-1 \cdot \ln x}{x^{2}} \Longrightarrow \frac{d y}{d x}=\left(\frac{y}{x}\right)^{2} \frac{1-\ln x}{1-\ln y} .
$$

When $x=4$, we have $y=2$ because $4^{2}=2^{4}$, so
$f^{\prime}(4)=\frac{1}{2^{2}} \cdot \frac{1-\ln 4}{1-\ln 2}=\frac{1-2 \ln 2}{4-4 \ln 2}=\frac{-1+2-2 \ln 2}{4-4 \ln 2}=\frac{1}{2}-\frac{1}{4-\ln 16} \Longrightarrow a+b+c=2+4+16=22$.
8. Let a be the positive real number such that the circle of radius 4 is tangent to the curve of $y=x^{2}$? at the points $P\left(-a, a^{2}\right)$ and $Q\left(a, a^{2}\right)$, and let C be the center of the circle. The slope of the line tangent to $y=x^{2}$ at $x=a$ is $\left.\frac{d}{d x} x^{2}\right|_{x=a}=2 a$, so the slope of $\overline{Q C}$ is $-\frac{1}{2 a}$ because $\overline{Q C}$ is perpendicular to the tangent line. The y-coordinate of C is therefore $-\frac{1}{2 a}(-a)=\frac{1}{2}$ larger than the y-coordinate of Q. Since $Q=\left(a, a^{2}\right)$, we conclude that $C=\left(0, a^{2}+\frac{1}{2}\right)$. Let $R=\left(0, a^{2}\right)$. Note that $\triangle C Q R$ is a right triangle with legs a and $\frac{1}{2}$ and a hypotenuse of 4 (the circle's radius). By the Pythagorean theorem, $a^{2}=4^{2}-\frac{1}{2^{2}}=\frac{63}{4}$, so $\frac{p}{q}=\frac{63}{4}+\frac{1}{2}=\frac{65}{4}$, yielding $p+q=65+4=69$.
9. We generalize this problem to a cylinder of radius R and a string of length $R \pi$ with one end pinned at $(x, y)=(R, 0)$. Let S be the circular base of the cylinder. Clearly, the string can sweep out a semicircle to the right of the line $x=R$ with radius $R \pi$, whose area is $\frac{1}{2} R^{2} \pi^{3}$. The remaining area that the string can cover is swept out as the string wraps around S in either direction; the farthest the string can wrap is $(-R, 0)$, covering half the circumference of S, or $R \pi$, the full length of the string. Using the parameter $\theta \in(0, \pi]$, we let $(x(\theta), y(\theta))$ be the position of the free end of the string when it is wrapped around θ radians of S (in a counterclockwise direction) and the remainder of the string is taut and lies along the line tangent to S at $(R \cos \theta, R \sin \theta)$. If $R \theta$ is the length of the wrapped portion of the string, then $R(\pi-\theta)$ is the length of the straight portion. The slope of the straight portion is $-\frac{\cos \theta}{\sin \theta}$, so $(x(\theta), y(\theta))=(R \cos \theta-R(\pi-\theta) \sin \theta, R \sin \theta+R(\pi-\theta) \cos \theta)$. The area above the x-axis bounded by the curve of all $(x(\theta), y(\theta))$ for $0<\theta \leq \pi$ is given by

$$
\begin{gathered}
A=\frac{1}{2} \int_{0}^{\pi} \sqrt{x^{2}(\theta)+y^{2}(\theta)}\left(\sqrt{x^{2}(\theta)+y^{2}(\theta)} d \theta\right) \\
=\frac{R^{2}}{2} \int_{0}^{\pi}\left(\cos ^{2} \theta+(\pi-\theta)^{2} \sin ^{2} \theta-2(\pi-\theta) \cos \theta \sin \theta+\sin ^{2} \theta+(\pi-\theta)^{2} \cos ^{2} \theta+2(\pi-\theta) \sin \theta \cos \theta\right) d \theta \\
=\frac{R^{2}}{2} \int_{0}^{\pi}\left(1+(\pi-\theta)^{2}\right) d \theta=\frac{R^{2}}{2} \int_{0}^{\pi}\left(1+u^{2}\right) d u=\frac{R^{2}}{2}\left(\pi+\frac{\pi^{3}}{3}\right) .
\end{gathered}
$$

This area measure includes the area of the half of S that lies above the x-axis, which is $\frac{\pi}{2} R^{2}$. Thus, the string sweeps out an area of $A-\frac{\pi}{2} R^{2}=\frac{R^{2} \pi^{3}}{6}$ above the x-axis and to the left of $x \neq R$. By symmetry, the same area is swept out below the x-axis and to the left of $x=R$. Adding these two areas to the initial semicircular area yields the total area,

$$
2 \cdot \frac{R^{2} \pi^{3}}{6}+\frac{R^{2} \pi^{3}}{2}=\frac{5 R^{2} \pi^{3}}{6}
$$

Taking $R=6$ makes the area $30 \pi^{3}$, giving $m=30$.
10. Because $A B=2, A C+C B=10$. A and B are fixed points, so the locus of points C such that $A C+C B=10$ is an ellipse with foci A and B. Suppose that this ellipse has the equation $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$; let $g(x, y)=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}$. To maximize $f(x, y)=x+y$ over the curve $g(x, y)=1$, we can use Lagrange Multipliers, which states that critical points $\left(x^{\star}, y^{\star}\right)$ of f over the curve $g(x, y)=1$ satisfy

$$
\nabla f\left(x^{\star}, y^{\star}\right) \propto \nabla g\left(x^{\star}, y^{\star}\right)
$$

Since $\nabla f(x, y)=\langle 1,1\rangle$ and $\nabla g(x, y)=\left\langle\frac{2 x}{a^{2}}, \frac{2 y}{b^{2}}\right\rangle$, we have $\frac{x^{\star}}{a^{2}}=\frac{y^{\star}}{b^{2}} \Longrightarrow x^{\star}=\frac{y^{\star} a^{2}}{b^{2}} \Longrightarrow 1^{* / 2}=$ $y^{\star 2}\left(\frac{a^{2}}{b^{4}}+\frac{1}{b^{2}}\right) \Longrightarrow y^{\star}= \pm \frac{b^{2}}{\sqrt{a^{2}+b^{2}}}$ and $x^{\star}= \pm \frac{a^{2}}{\sqrt{a^{2}+b^{2}}}$. Clearly, taking both x^{\star} and y^{\star} to be positive will make the extremum of f at $\left(x^{\star}, y^{\star}\right)$ a maximum, so the maximum possible value of $x+y$ is

$$
\frac{a^{2}+b^{2}}{\sqrt{a^{2}+b^{2}}}=\sqrt{a^{2}+b^{2}}
$$

Note that the points $(a, 0)$ and $(0, b)$ lie on the ellipse of interest. In our case, this means that $(a-1)+(a+1)=10$ and $2 \sqrt{1+b^{2}}=10$, so we get $a=5, b=\sqrt{24}$, and $\max (x+y)=\sqrt{5^{2}+\sqrt{24}^{2}}=7$.

