Johns Hopkins Math Tournament 2019
 Individual Round: Calculus

February 9, 2019

Instructions

- DO NOT TURN OVER THIS PAPER UNTIL TOLD TO DO SO.
- This test contains 10 questions to be solved individually in 60 minutes.
- All answers will be integers.
- Only answers written on the appropriate area on the answer sheet will be considered for grading.
- Problems are weighted relative to their difficulty, determined by the number of students who solve each problem.
- No translators, books, notes, slide rules, calculators, abaci, or other computational aids are permitted. Similarly, graph paper, rulers, protractors, compasses, and other drawing aids are not permitted.
- If you believe the test contains an error, immediately tell your proctor and if necessary, report the error to the front desk after the end of your exam.
- Good luck!

Note: If necessary, recall that Euler's constant is $e \approx 2.718$. You will not need any more decimal places.

1. Evaluate the definite integral

$$
\int_{20}^{19} d x
$$

2. Compute the greatest integer less than or equal to the limit $\lim _{x \rightarrow 0^{+}}(\cos (x))^{\ln x}$.
3. Determine the greatest integer less than or equal to

$$
100 \sum_{n=0}^{\infty} \frac{1}{(n+3) \cdot n!}
$$

4. The value of the following series

$$
\sum_{n=2}^{\infty} \frac{3 n^{2}+3 n+1}{\left(n^{2}+n\right)^{3}}
$$

can be written in the form $\frac{m}{n}$, where m and n are coprime. Compute $m+n$.
5. Given

$$
4 \int_{\ln 3}^{\ln 5} \frac{e^{3 x}}{e^{2 x}-2 e^{x}+1} d x=a+b \ln 2
$$

where a and b are integers, what is the value of $a+b$?
6. The double factorial of a positive integer n is denoted n !! and equals the product $n(n-2)(n-$ 4) $\cdots\left(n-2\left(\left\lceil\frac{n}{2}\right\rceil-1\right)\right)$; we further specify that $0!!=1$. What is the greatest integer q such that

$$
\sqrt[4]{q}<\sum_{n=0}^{\infty} \frac{1}{(2 n)!!} ?
$$

7. Let e be Euler's constant. For all real x greater than e, let $f(x)$ be the unique positive real value y satisfying $y<x$ and $x^{y}=y^{x}$. Over $x \in(e, \infty)$, the function $y=f(x)$ is differentiable, and the value of $f^{\prime}(4)$ can be expressed as $\frac{1}{a}-\frac{1}{b-\ln c}$ for positive integers a, b, and c. Compute the value of $a+b+c$.
8. A circle of radius 4 is tangent to the parabola $y=x^{2}$ at two distinct points and is centered at some point on the y-axis. The distance between the center of the circle and the origin $(x, y)=(0,0)$ can be expressed as $\frac{p}{q}$, for relatively prime positive integers p and q. Compute $p+q$.
9. A cylinder of radius 6 rests on the Euclidean plane, with the center of its base at the origin. One end of a string of length 6π is attached to the cylinder at the point $(6,0)$. Assume that the string's width is negligible. The area of the region on the plane that can be reached by the free end of the string can be written as $m \pi^{3}$ for a natural number m. Find the value of m.
10. In the Euclidean plane, vertices $A(-1,0), B(1,0)$, and $C(x, y)$ form a triangle with perimeter 12 . What is the largest possible integer value of $x+y$?
