Solutions

1. 47 .
2. Multiply all terms by $4 a b$ to yield the equation $a b-4 a-b=0$. Then, use Simon's favorite factoring trick to yield the equation $16=(a-4)(b-4)$. Since 16 has 3 pairs of factors $(1 \& 16,2 \& 8,4 \& 4)$, there are 5 such ordered pairs.
3. This is equivalent to the condition $a \equiv-1(\bmod 60)$. Since $60 \times 33=1980$, and $2019-1980=39<59$, there are 33 such numbers.
4. Since the sum of coefficients equal to 2019, $P(1)=2019, P(-1)=-2019, P(0)=0$. Set $P(x)=$ $Q(x)\left(x^{3}-x\right)+a x^{2}+b x+c$. Then $P(1)=a+b+c=2019, P(-1)=a-b+c=-2019, P(0)=c=0$. Hence $a=0, b=2019$, and so the remainder is $2019 x$. Thus, the answer is 2019 .
5. The relation $(X+1) P(X)=(X-10) P(X+1)$ shows that $\mathrm{P}(\mathrm{x})$ is divisible by $(\mathrm{x}-10)$. Shifting the variable, we get $x P(x-1)=(x-11) P(x)$, which shows that $P(x)$ is also divisible by x. Hence $P(x)=x(x-10) P_{1}(x)$ for some polynomial $P_{1}(x)$. Substituting in the original equation and canceling common factors, we find that $P_{1}(x)$ satisfies

$$
x P_{1}(x)=(x-9) P_{1}(x+1)
$$

. Arguing as before, we find that $P_{1}(x)=(x-1)(x-9) P_{2}(x)$. Repeating the argument, we eventually see that $P(x)=x(x-1)(x-1) \ldots(x-10) Q(x)$, where $Q(x)$ satisfies $Q(x)=Q(x+1)$, which means that $Q(x)$ is constant. Thus, $P(x)=a x(x-1)(x-1) \ldots(x-10)$, but since the leading coefficient $=1$, $P(x)=x(x-1)(x-1) \ldots(x-10) . P(5)=0$.
6. Using a complex number approach: note that $1+i=\sqrt{2}(\cos (\pi / 4)+i \sin (\pi / 4)$. From de Moivre's formula, we have

$$
\begin{aligned}
(1+i)^{1000} & =(\sqrt{2})^{1000}(\cos (1000 * \pi / 4)+i \sin (1000 * \pi / 4) \\
= & 2^{500}\left(\cos (250 \pi)+i \sin (250 \pi)=2^{500}\right.
\end{aligned}
$$

Using binomial expansion, $(1+i)^{1000}=\binom{1000}{0}+\binom{1000}{1} i+\binom{1000}{2} i^{2}+\ldots+\binom{1000}{1000} i^{1000}$ So by looking at the real and imaginary parts. $\binom{1000}{0}-\binom{1000}{2}+\binom{1000}{4}-\ldots+\binom{1000}{1000}=2^{500}$. Thus $A=500$.
7. Using Viete's relations we obtain the system

$$
\begin{gathered}
a+b=\frac{b}{a} \\
a b=\frac{c}{a} \\
b^{2}-4 a c=c
\end{gathered}
$$

write this as

$$
\begin{gathered}
a^{2}+a b=b \\
a^{2} b=c \\
b^{2}-4 a c=c
\end{gathered}
$$

Eliminating c we get

$$
\begin{aligned}
a^{2}+a b & =b \\
b^{2}-4 a^{3} b & =a^{2} b
\end{aligned}
$$

The first equation shows that $b \neq 0$, so the second can be divided by b, yielding $b-4 a^{3}=a^{2}$ or $b=4 a^{3}+a^{2}$. Canceling a^{2} we $4 a=3$, so $a=\frac{3}{4}$. Then $b=\frac{9}{4}$ and $c=\frac{81}{64}$. Thus $\frac{4 c}{a b}=3$.
8. Using the identity $a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)$ and pairing x^{3} with $(x+3)^{3}$ and $(x+1)^{3}$ with $(x+2)^{2}$, we get

$$
(2 x+3)\left(x^{2}-x(x+3)+(x+3)^{2}\right)+(2 x+3)\left((x+1)^{2}-(x+1)(x+2)+(x+2)^{2}\right)
$$

which reduces to

$$
2(2 x+3)\left(x^{2}+3 x+6\right)=0
$$

The quadratic $x^{2}+3 x+6=(x+3 / 2)^{2}+\frac{15}{4}$, so it is strictly positive. The only way the equation is satisfied is when $2 x+3=0$, or $x=\frac{3}{2}$. Thus, 5 .
9. Transform $P(x)=\left(1+x+^{2}+x^{3}+\ldots+x^{17}\right)^{2}-x^{17}$ using geometric series formula, yielding

$$
\begin{gathered}
P(x)=\left(\frac{x^{18}-1}{x-1}\right)^{2}-x^{17}=\frac{x^{36}-2 x^{18}+1}{x^{2}-2 x+1}-x^{17} \\
\quad=\frac{x^{36}-x^{19}-x^{17}+1}{(x-1)^{2}}=\frac{\left(x^{19}-1\right)\left(x^{17}-1\right)}{(x-1)^{2}}
\end{gathered}
$$

This equation has as roots all of 17 th and 19 th roots of unity, excluding 1 . Hence we want to find the smallest fraction of the form $\frac{m}{19}$ or $\frac{n}{17}$ for $m, n>0$ We find: $\frac{1}{19}, \frac{2}{19}, \frac{3}{19}, \frac{1}{17}, \frac{2}{17}$, yielding $\frac{1}{19}+\frac{2}{19}+\frac{3}{19}+$ $\frac{1}{17}+\frac{2}{17}=\frac{6}{19}+\frac{3}{17}=\frac{159}{323}$ Thus, $\alpha+\beta=159+323=482$.
10. Recall Heron's formula for area of a triangle with sides a, b, c :

$$
A=\frac{1}{4} \sqrt{(a+b+c)(a+b-c)(b+c-a)(c+a-b)}
$$

From Vieta's, we know that $a+b+c=4$, so $a+b-c=4-2 c$ and analogue for a and b. Therefore, the area is

$$
A=\frac{1}{4} \sqrt{4(4-2 a)(4-2 b)(4-2 c)}
$$

Furthermore,

$$
(4-2 a)(4-2 b)(4-2 c)=8(-4(a+b+c)+2(a b+b c+a c)-a b c+8)
$$

By Vieta's,

$$
a b+b c+a c=5, a b c=19 / 10
$$

Thus the area is

$$
A=\frac{1}{4} \sqrt{4 * 8\left(-16+10-\frac{19}{10}+8\right)}=\frac{1}{\sqrt{5}}
$$

In simplest radical form, we have the fraction $\sqrt{5} / 5$, thus the answer is 10 .

