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ABSTRACT. Defined by Tom M. Apostol (see [2]), the Möbius function of order k is 

a natural generalization of Möbius function which is one of the most important 

arithmetic functions studied in analytic number theory. In this paper we study some 

properties of Möbius function of order k, denoted by µk, some of which are analogous 

to ordinary Möbius function. This involves some summation formulas involving µk. We 

also use some of them to study “k-free integers”. And from here, we define Euler’s 

Totient of order k, denoted by φk, and study its properties and relation with µk. We also 

present asymptotic formula about φk with proof. Furthermore, we study the asymptotic 

behavior of k-free integers with the help of µk. 
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1. Introduction 

Möbius function is one very important arithmetic function whose properties are 

beautiful and pragmatic in connection with the study of other arithmetic functions and 

analytic number theory. And a natural generalization of Möbius function, the Möbius 

function of order k which was defined originally by T. M. Apostol, is one central topic 

of this paper. 

A key operation between arithmetic functions in number theory is Dirichlet 

convolution, an operation which is communicative and associative. This paper will not 

focus on the general Dirichlet convolution, but some properties of the arithmetic 

functions we discuss is of that exact form or a similar form. And some of such formulas 

are especially useful to draw connections between different arithmetic functions and 

deduce asymptotic formulas of partial sum of unfamiliar functions to familiar ones. 

Another tool worth mentioning is Riemann zeta function. It is always miraculously 

connected to all different subfields of analytic number theory. And some of our results 

make use of ζ(s)’s properties in related to µ(n) (like µ(n)’s relation with 1/ζ(s)). Apart 

from that, Riemann zeta function appears in some basic asymptotic formulas we make 

use of as well to deduce more asymptotic formulas, like the partial sum of φk(n). 

We begin with a review of the definition of the ordinary Möbius function µ(n) in 

Section 2, and give some elementary properties of it which we will generalize to µk(n). 

Then we begin our discussion of properties of µk in Section 3. After that, define function 

φk, which we shall call “Euler’s Totient of order k” in Section 4. We will also present 

our results of several formulas relating Möbius function and Euler’s Totient of order k. 

In Section 5 and 6, we discuss some asymptotic formulas. We begin with its relation 

with µk and a proof of Gegenbauer’s theorem of k-free integers (Apostol didn’t go into 

detail of that proof in his paper). And with this theorem we easily estimate the 

“proportion” of k-free integers. And in Section 6 we study asymptotic formulas 

involving φk(n). 

Note that without specified, the letter p or pi (p with some subscript) always denote 

prime numbers in the set of positive integers. And for all arithmetic function we mean 

a mapping from ℤ" to ℂ, as usual. And π = 3.1415926… 

 

2. A Review of Möbius Function (and Euler’s Totient Function) 
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In this section we present a brief review of some basic known facts about Möbius 

functions (for details and further see [1]). 

 

Definition 2.1 Möbius function is an arithmetic function µ(n) defined as 

$
𝜇(1) = 1;

𝜇(𝑛) = (−1)-	𝑖𝑓	𝑛	𝑖𝑠	𝑡ℎ𝑒	𝑝𝑟𝑜𝑑𝑢𝑐𝑡	𝑜𝑓	𝑘	𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡	𝑝𝑟𝑖𝑚𝑒𝑠;
𝜇(𝑛) = 0	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

 

From the definition we notice that µ(n) = 0 if and only if n is not square free, by which 

we mean that n contains a divisor which is a square number. A general definition of k-

free is the following: 

 

Definition 2.2 An integer n is kth-power free or k-free if there’s no prime p such that 

𝑝-|	𝑛. 

 

 The rest of this section is devoted to the presentation of some properties of µ(n) 

without proof. Note that these results are not new; in fact they are special cases of our 

new results regarding the properties of µk(n) (which we will prove), which we will 

present in Section 3. 

 

Proposition 2.1  

A𝜇(𝑑) = 	 B
1
𝑛C

D|E

 

Here “⌊𝑥⌋” denotes the greatest integer less than or equal to x, namely the floor 

function. 

 

Proposition 2.2 Let φ(n) denotes Euler’s Totient function (the number of integers 

coprime to n within [1, n]), we have 

𝜑(𝑛) =A𝜇(𝑑)
𝑛
𝑑

D|E

 

 

Proposition 2.3 Let φ(x, n) denote the number of positive integers less than or equal to 

x that are coprime to n. Then 
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𝜑(𝑥, 𝑛) =A𝜇(𝑑) K
𝑥
𝑑
L

D|E

 

 

3. Möbius Function of Order k and Its Properties 

Möbius function of order k is defined by Apostol in the following way: 

 

Definition 3.1 Möbius function of order k is an arithmetic function µk(n) such that: 

⎩
⎨

⎧
𝜇-(1) = 1;

𝜇-(𝑛) = 0	𝑖𝑓	𝑛	𝑖𝑠	𝑛𝑜𝑡	“(𝑘 + 1) − 𝑓𝑟𝑒𝑒”;
𝜇-(𝑛) = (−1)S	𝑖𝑓	𝑛 = 𝑝T- …𝑝S-𝑝S"TVWXY …𝑝ZV[ , 𝑤ℎ𝑒𝑟𝑒	0 ≤ 𝑎S"T, … , 𝑎Z < 𝑘;	

𝜇-(𝑛) = 1	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

 Note that for k = 1, 𝜇T(𝑛) = 𝜇(𝑛). 

 

From the properties of Möbius functions and some numerical trials, we have 

conjectured (and proved, see below) the following formulas regarding µk(n). 

 

Theorem 3.1 For 𝑛, 𝑘, 𝑑 ∈ ℤ", we have: 

A 𝜇-(𝑑-) = `0	𝑖𝑓	𝑛	𝑖𝑠	𝑛𝑜𝑡	“𝑘 − 𝑓𝑟𝑒𝑒”;
1	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

Da|E

 

 

Theorem 3.2 For 𝑘, 𝑑 ∈ ℤ" , 𝑥 ∈ ℝ", 𝑥 ≥ 1  ∑ 𝜇(𝑑) Ke
D
L = 1Dfe ; and in fact a 

general case is that 

A𝜇-(𝑑-) K
𝑥
𝑑-
L = #-(𝑥)

Dfe

 

Where we denote the number of k-free positive integers less than or equal to x as #k(x). 

Note that for all positive integer k, 1 is k-free. This is from the definition of k-free and 

the fact that 1 is not divisible by any positive power prime numbers. So the first formula 

is the special case of the second one (k = 1 case). 

 

 Apostol studied several properties of µk(n) himself, the following formula is one of 

them which turns out to be a very important tool in our study. 
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Lemma 3.1 For all 𝑘 ≥ 1 and 𝑛 ∈ ℤ", 𝜇-(𝑛-) = 𝜇(𝑛). Here 𝜇(𝑛) is the Möbius 

function (of order 1). 

 

PROOF. By definition, 𝜇-(1-) = 𝜇-(1) = 1 = 𝜇(1) ; if n is square-free, let 𝑛 =

𝑝T …𝑝S, so 𝑛- = 𝑝T- …𝑝S- and therefore 𝜇-(𝑛-) = (−1)S = 	𝜇(𝑛). Now if n is not 

square-free, there exist prime p such that 𝑝h|𝑛, so 𝑝h-|𝑛-. For all 𝑘 ≥ 1, 2𝑘 ≥ 𝑘 + 1, 

so 𝑝-"T|𝑛-. And by definition, 𝜇-(𝑛-) = 0 = 𝜇(𝑛) in this case.               \\\ 

 

We will now prove our Theorem 3.1 and 3.2. Note that with the above lemma µk’s 

in our conjectures can be reduced to our familiar µ. 

 

PROOF OF Theorem 3.1. By Lemma 3.1, it is equivalent to prove that for 𝑛, 𝑘, 𝑑 ∈

ℤ", 

A 𝜇(𝑑) = `0	𝑖𝑓	𝑛	𝑖𝑠	𝑛𝑜𝑡	“𝑘 − 𝑓𝑟𝑒𝑒”;
1	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

Da|E

 

If n is not k-free, write 𝑛 = 𝑝TVY …𝑝SVW𝑝S"TVWXY …𝑝ZV[  where 𝑎T, … , 𝑎S ≥ 𝑘 , and 

0 ≤ 𝑎S"T, … , 𝑎Z ≤ 𝑘. So all the none zero terms LHS are: 

A 𝜇(𝑑) = 𝜇(1) + 𝜇(𝑝T) + ⋯+ 𝜇(𝑝S)
Da|E

+ 𝜇(𝑝T𝑝h) + ⋯+ 𝜇(𝑝T …𝑝S)

= k
𝑟
0l
(−1)m + k

𝑟
1l
(−1)T +⋯+ k

𝑟
𝑖l
(−1)n + k

𝑟
𝑟l
(−1)S

= [(𝑥 − 1)S]eqT = 0. 

And if n is k-free, then the only d such that 𝑑-|𝑛 is 1. So 

A 𝜇(𝑑) = 𝜇(1) = 1.
Da|E

 

                                                                   \\\ 

 

PROOF OF Theorem 3.2. By Lemma 3.1, it is equivalent to prove that for	𝑘, 𝑑 ∈ ℤ", 

𝑥 ∈ ℝ",  

A𝜇(𝑑) K
𝑥
𝑑-
L = #-(𝑥)

Dfe

 

We have: 
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A𝜇(𝑑) K
𝑥
𝑑-
L = 	A A 𝜇(𝑑)

Da|r
Tfrfe

DfeDfe

= A A 𝜇(𝑑)
Da|rTfrfe

 

where the last step is obtained by changing the order of summation. Note that by 

Theorem 3.1, ∑ 𝜇(𝑑)Da|r  is 1 if and only if y is k-free, and is 0 otherwise. So 

∑ ∑ 𝜇(𝑑)Da|rTfrfe  counts all k-free positive integers less than or equal to x.       \\\ 

 

 Apostol proved (see [1]) that each 𝜇-(𝑛) is multiplicative. We can now consider 

another summation and make use of this result: 

A𝜇-(𝑑)
D|E

 

Let 𝑛 = 𝑝TVY …𝑝SVW , each 𝑎n > 0, let 𝑑 = 𝑝TtY …𝑝StW, each 𝑏n ≥ 0. So 

𝜇-(𝑑) = 𝜇-(𝑝TtY)…𝜇-(𝑝StW) 

So  

A𝜇-(𝑑)
D|E

= A 𝜇-(𝑑)
D|vYwY

… A 𝜇-(𝑑)
D|vWwW

 

It is much easier to compute each summation ∑ 𝜇-(𝑑)D|vxwx , this is 

A 𝜇-(𝑑)
D|vxwx

= y𝑎n + 1	𝑖𝑓	𝑎n < 𝑘;
𝑘 − 1	𝑖𝑓	𝑎n ≥ 𝑘.  

 Also we can study: 

ℎ-(𝑛) =A𝜇-(𝑑)
𝑛
𝑑

D|E

 

by first proving that	ℎ-(𝑛) is a multiplicative function for each n. Let 𝑛 = 𝑝TVY …𝑝SVW 

and 𝑑 = 𝑝TtY …𝑝StW, where 𝑎n > 0 and 𝑏n ≥ 0. We have  

A𝜇-(𝑑)
𝑛
𝑑

D|E

= A … A z𝜇-(𝑝TtY)
𝑝TVY
𝑝TtY

{…z𝜇-(𝑝StW)
𝑝SVW
𝑝StW

{
VW

tWqm

VY

tYqm

=|}A 𝜇-(𝑝~t�)
𝑝~V�
𝑝~t�

		
V�

t�qm

�
S

~qT

=|ℎ-(𝑝~V�)
S

~qT

 

With this relation the multiplicity simply follows. So we can simply study 

ℎ-(𝑝~V�) = A 𝜇-(𝑑)
𝑝~V�
𝑑

D|v�w�
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This is much easier to calculate: 

ℎ-(𝑝~V�) = A 𝜇-(𝑑)
𝑝~V�
𝑑

D|v�w�
= �A�𝑝~V��n�

-�T

nqm

� − ⌊𝑝~V��-⌋ 

which follows from the definition and a similar argument as the above discussion. 

 

4. Euler’s Totient of Order k and Its Properties 

Euler’s Totient of order k is our generalization of Euler’s Totient. We will present 

our definition of Euler’s Totient of order k first, and then discuss a bit about how it 

comes. 

 

Definition 4.1 For a positive integer k, we define Euler’s Totient of order k, denoted by 

φk, as an arithmetic function that φk(n) = the number of positive integers i less than or 

equal to n such that gcd(n, i) is k-free. Here “gcd(n, i)” denotes the greatest common 

divisor of n and i. 

 

The original idea of such definition comes from Proposition 2.2, and we want to 

generalize the Dirichlet convolution to the Möbius function of order k. But what would 

such generalization mean, as an arithmetic function of n? We have conjectured and 

proved that it is the above Euler’s Totient of order k. This is illustrated in our theorem 

below: 

 

Theorem 4.1 For 𝑛, 𝑘, 𝑑 ∈ ℤ", we have: 

𝜑-(𝑛) = A 𝜇-(𝑑-)
Da|E

𝑛
𝑑- = A 𝜇(𝑑)

Da|E

𝑛
𝑑- 

Note that the second equality follows from Lemma 3.1. 

 

 Actually this result is a consequence of our next theorem (Theorem 4.2), which is 

our generalization of Proposition 2.3. We first generalize φ(x, n) into φk(x, n): 

 

Definition 4.2 For 𝑥 ∈ ℝ"  and 𝑛 ∈ ℤ" , define φk(x, n) = the number of positive 

integers i less than or equal to x such that gcd(n, i) is k-free. 
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Theorem 4.2 For 𝑛, 𝑘, 𝑑 ∈ ℤ" and 𝑥 ∈ ℝ" we have: 

𝜑-(𝑥, 𝑛) = A 𝜇-(𝑑-)
Da|E

K
𝑥
𝑑-
L = A 𝜇(𝑑)

Da|E

K
𝑥
𝑑-
L 

Note that Theorem 4.1 is a special case of the theorem above, by setting x = n. 

 

PROOF. Clearly, K e
Da
L counts the number of positive integers less than or equal to x 

that are the multiple of 𝑑-. Let 𝑑- = (𝑝T-)VY … (𝑝S
-)VW, where 𝑝T, … , 𝑝S are distinct 

prime factors of n whose kth power divides n and 𝑎n ≥ 0. Since 𝑑- = (𝑝TVY …𝑝S
VW)- 

Hence ∑ 𝜇(𝑑)Da|E K e
Da
L counts: 

𝑎𝑙𝑙	𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠	𝑤𝑖𝑡ℎ𝑖𝑛	[1, 𝑥]

−A𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑠	𝑜𝑓	𝑒𝑎𝑐ℎ	𝑝n-

+A𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑠		𝑜𝑓	𝑒𝑎𝑐ℎ	 (𝑝n𝑝�)-

−A𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑠	𝑜𝑓	𝑒𝑎𝑐ℎ	(𝑝n𝑝�𝑝Z)-	 + ⋯

+ (−1)S × 𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑠	𝑜𝑓	(𝑝T …𝑝S)-  

by the definition of Möbius function (the other terms which involves 𝑎n > 1  all 

vanishes). Hence by Inclusion-Exclusion Principle, ∑ 𝜇(𝑑)Da|E K e
Da
L  counts all 

integers within [1, 𝑥] that are not multiple of any 𝑝n, each counted without repetition. 

And that is the number of integers in that interval whose greatest common divisor with 

n is k-free, so ∑ 𝜇(𝑑)Da|E K e
Da
L = 𝜑-(𝑥, 𝑛).                                 \\\ 

 

5. Asymptotic Formulas Related to k-free Integers and Möbius functions 

We begin our discussion of asymptotic formulas from this Section on, which 

requires some tools in analytic number theory. We shall first give some known results 

as lemmas which we shall make frequent use of (for details and further see [1]). 
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Lemma 5.1 For 𝑠 > 1, T
�(�)

= ∑ �(E)
E�E�T , where 𝜇(𝑛) is the Möbius function,	𝑛 ∈ ℤ". 

 

Note that we shall only make use of the real-variable Riemann zeta function 𝜁(𝑠), 

defined as 𝜁(𝑠) = ∑ T
E�E�T , 𝑛 ∈ ℤ". And as commonly known is converges when 𝑠 >

1. 

 

Lemma 5.2 Let 𝑥 ≥ 1 and 𝑛 ∈ ℤ", we have: 

A
1
𝑛�

Efe

= �
log𝑥 + 𝐶 + 𝑂 z

1
𝑥{ , 𝑖𝑓	𝑠 = 1;

𝑥T��

1 − 𝑠 + 𝜁
(𝑠) + 𝑂(𝑥��), 𝑖𝑓	𝑠 > 0	𝑎𝑛𝑑	𝑠 ≠ 1.

 

 

 Here we shall explain the notations we used. “log x” always denote natural 

logarithm (with base e). C here denotes the Euler’s Constant, and 𝐶 = lim
E→�

k1 + T
h
+

T
�
+⋯+ T

E
− log𝑛l . The “big-oh” notation is defined such that 𝑓(𝑥) = 𝑂(𝑔(𝑥)) 

where 𝑔(𝑥) is positive-valued means that for sufficiently large x, there exist a constant 

𝑀 > 0 such that |𝑓(𝑥)| ≤ 𝑀𝑔(𝑥). And an equation like 𝑓(𝑥) = 𝑔(𝑥) + 𝑂�ℎ(𝑥)� 

means that 𝑓(𝑥) − 𝑔(𝑥) = 𝑂(ℎ(𝑥)). 

 

Lemma 5.3 Let 𝑥 ≥ 1 and 𝑛 ∈ ℤ", we have: 

A
1
𝑛�

E�e

= 𝑂(𝑥T��) 

for 𝑠 > 1. 

 

 Recall that in Theorem 3.2 we find that number of k-free positive integers less than 

or equal to x (a real number greater than or equal to 1) is ∑ 𝜇(𝑑) K e
Da
LDfe . Denote the 

number of k-free positive integers less than or equal to x as #k(x), so 

#-(𝑥) = A𝜇(𝑑) K
𝑥
𝑑-
L .

Dfe
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We will first try to find an asymptotic formula based on this, and see whether it is 

helpful. Note that we assumed k to be greater than 1, or else we have #-(𝑥) = 1 for k 

= 1. 

#-(𝑥) = A𝜇(𝑑) K
𝑥
𝑑-
L

Dfe

= A𝜇(𝑑)  
𝑥
𝑑- + 𝑂

(1)¡
Dfe

= �A𝜇(𝑑)
𝑥
𝑑-

Dfe

� + 𝑂(𝑥)

= 𝑥 �A
𝜇(𝑑)
𝑑-

D�T

− A
𝜇(𝑑)
𝑑-

D�e

� + 𝑂(𝑥)

= 𝑥}A
𝜇(𝑑)
𝑑-

D�T

+ 𝑂 �A
1
𝑑-

D�e

�� + 𝑂(𝑥)

= 𝑥 �
1

𝜁(𝑘) + 𝑂
(𝑥T�-)� + 𝑂(𝑥) =

𝑥
𝜁(𝑘) + 𝑂

(𝑥) = 𝑂(𝑥) 

Unfortunately, this result will not be so helpful, due to the relatively large error 

bound of 𝑂(𝑥). But we can do it in another way. 

 

Lemma 5.4 For 𝑛, 𝑘, 𝑑 ∈ ℤ", we have: 

|𝜇-(𝑛)| = A 𝜇(𝑑)
DaXY|E

 

 

PROOF. We prove by several case works on n. If n = 1, Clearly 	

|𝜇-(1)| = 1 = 𝜇(1) = A 𝜇(𝑑)
DaXY|T

 

If 𝑝T, … , 𝑝Z are all the primes such that 𝑝n-"T|𝑛, |𝜇-(𝑛)| = 0. And  

A 𝜇(𝑑)
DaXY|E

= 𝜇(1) + 𝜇(𝑝T) + ⋯+ 𝜇(𝑝T𝑝h) + ⋯+ 𝜇(𝑝T …𝑝Z) = 0 

As shown before in the proof of Theorem 3.1. Now if 𝑛 = 𝑝T- …𝑝S-𝑝S"TVWXY …𝑝ZV[ , 
where	0 ≤ 𝑎S"T, … , 𝑎Z < 𝑘, then |𝜇-(𝑛)| = 1, and ∑ 𝜇(𝑑)DaXY|T = 𝜇(1) = 1. And if 

𝑛 = 𝑝TVY …𝑝SVW  where 0 ≤ 𝑎T, … , 𝑎S < 𝑘 , then |𝜇-(𝑛)| = 1  and ∑ 𝜇(𝑑)DaXY|T =

𝜇(1) = 1 as well. And our proof is complete.                               \\\ 

 

 Our proof is a different one with Apostol’s proof in his paper. So we go into some 

more details above. 
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 Now by Theorem 3.1, we know that ∑ 𝜇(𝑑)DaXY|E = 1 if and only if n is (k + 1)-

free and equals to 0 otherwise. So we have (k is positive integer) 

#-"T(𝑥) = A A 𝜇(𝑑)
DaXY|EEfe

= A|𝜇-(𝑛)|
Efe

 

This is the formula that related (k + 1)-free positive integers and function 𝜇-(𝑛). And 

we can further derive Gegenbauer’s theorem of k-free integers with 

#-"T(𝑥) = A A 𝜇(𝑑)
DaXY|EEfe

= A 𝜇(𝑑)
¢,DaXY

¢DaXYfe

= A £𝜇(𝑑) A 1
¢f e
DaXY

¤
DaXYfe

= A k𝜇(𝑑) K
𝑥

𝑑-"T
Ll

DaXYfe

= A  𝜇(𝑑)(
𝑥

𝑑-"T + 𝑂
(1)¡

DaXYfe

= A 𝜇(𝑑)
𝑥

𝑑-"T
Dfe

Y
aXY

+ A �𝜇(𝑑) + 𝑂(1)�

Dfe
Y

aXY

= A 𝜇(𝑑)
𝑥

𝑑-"T
Dfe

Y
aXY

+ 𝑂 z𝑥
T

-"T{ = 𝑥 A
𝜇(𝑑)
𝑑-"T

Dfe
Y

aXY

+ 𝑂 z𝑥
T

-"T{

= 𝑥£A
𝜇(𝑑)
𝑑-"T

�

DqT

− A
𝜇(𝑑)
𝑑-"T

D�e
Y

aXY

¤ + 𝑂 z𝑥
T

-"T{

= 𝑥

⎝

⎜
⎛ 1
𝜁(𝑘 + 1) + 𝑂£ A

1
𝑑-"T

D�e
Y

aXY

¤

⎠

⎟
⎞
+ 𝑂 z𝑥

T
-"T{

= 𝑥 �
1

𝜁(𝑘 + 1) + 𝑂 z𝑥
�-
-"T{�+ 𝑂 z𝑥

T
-"T{ =

𝑥
𝜁(𝑘 + 1) + 𝑂 z𝑥

T
-"T{ 

which is exactly what Gegenbauer’s theorem states. So now we have 

#-"T(𝑥) = A|𝜇-(𝑛)|
Efe

=
𝑥

𝜁(𝑘 + 1) + 𝑂 z𝑥
T

-"T{ 

Therefore we can easily deduce the “proportion” of (k + 1)-free integers (k is positive 

integer): 

lim
e→�

#-"T(𝑥)
𝑥 =

𝑥
𝜁(𝑘 + 1) + 𝑂 z𝑥

T
-"T{

𝑥 =
1

𝜁(𝑘 + 1). 
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Loosely speaking, that is to say if we choose a positive integer randomly, the probability 

that this integer is (k + 1)-free is T
�(-"T)

. Or the “proportion” of (k + 1)-free integers 

among all positive integers is T
�(-"T)

. A special case is k = 1, which shows that the 

“proportion” of square-free integer among all positive integers is T
�(h)

, which is «
¬­

. 

This is approximately 0.60793, so a slightly more that 60% of positive integers are 

square-free, which is more than a half. 

 

6. Asymptotic Formula Involving φk 

In this Section the goal is to study the average order of φk. What we will do is to 

deduce an asymptotic formula for its partial sum, namely ∑ 𝜑-(𝑛)Efe . Here k and n 

are positive integers and x is real number greater than 1. 

We begin with our relation 	

𝜑-(𝑛) = A 𝜇-(𝑑-)
Da|E

𝑛
𝑑- = A 𝜇(𝑑)

Da|E

𝑛
𝑑- 

which our Theorem 4.1. So we have 

A𝜑-(𝑛)
Efe

= AA 𝜇(𝑑)
Da|E

𝑛
𝑑-

Efe

 

Therefore, 

A𝜑-(𝑛)
Efe

= AA 𝜇(𝑑)
Da|E

𝑛
𝑑-

Efe

= A 𝜇(𝑑)𝑞
¢,Da

¢Dafe

= A £𝜇(𝑑) A 𝑞
¢f e
Da

¤
Dafe

= A }𝜇(𝑑)�
1
2 k

𝑥
𝑑-l

h
+ 𝑂 k

𝑥
𝑑-l

��

Dfe
Y
a

 

Here we use the simple fact that ∑ 𝑞¢f ¯
°a

= T
h
k e
Da
l
h
+ 𝑂 k e

Da
l. This is because 
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A 𝑞
¢f e
Da

=
K 𝑥𝑑-L kK

𝑥
𝑑-L + 1l

2 =
z 𝑥𝑑- + 𝑂(1){

h

2 =
k 𝑥𝑑-l

h
+ 𝑂 k 𝑥𝑑-l + 𝑂(1)

2

=
1
2 k

𝑥
𝑑-l

h
+ 𝑂 k

𝑥
𝑑-l 

as wanted. So up to now we have 

A𝜑-(𝑛)
Efe

=
1
2 𝑥

h £A
𝜇(𝑑)
𝑑h-

Dfe
Y
a

¤ + 𝑂£𝑥 A
1
𝑑-

Dfe
Y
a

¤ 

Now there are two parts that need to be reduced. One is ∑ �(D)
D­aDfe

Y
a

, and the other 

one is T
e
∑ T

DaDfe
Y
a

 inside the big-oh notation. We first figure out the “∑ �(D)
D­aDfe

Y
a

” term. 

We write 

A
𝜇(𝑑)
𝑑h-

Dfe
Y
a

= A
𝜇(𝑑)
𝑑h-

�

DqT

− A
𝜇(𝑑)
𝑑h-

D�e
Y
a

 

where the first term is just T
�(h-)

 by Lemma 5.1. And we continue to estimate the 

second term: 

A
𝜇(𝑑)
𝑑h-

Dfe
Y
a

= A
𝜇(𝑑)
𝑑h-

�

DqT

− A
𝜇(𝑑)
𝑑h-

D�e
Y
a

= A
𝜇(𝑑)
𝑑h-

�

DqT

+ 𝑂£A
1
𝑑h-

D�e
Y
a

¤

=
1

𝜁(2𝑘) + 𝑂  z𝑥
T
-{

T�h-
	¡ 

The last step follows from Lemma 5.3, since we know that 2𝑘 > 1 for positive integer 

k. So we have: 

A
𝜇(𝑑)
𝑑h-

Dfe
Y
a

=
1

𝜁(2𝑘) + 𝑂 z𝑥
T�h-
- 	{ 

 This is an asymptotic formula related to Möbius function, which is our 

generalization of the known one: 

A
𝜇(𝑑)
𝑑h

Dfe

=
1

𝜁(2) + 𝑂 z
1
𝑥	{ =

6
𝜋h + 𝑂 z

1
𝑥	{ 
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 We now turn to our discussion of T
e
∑ T

DaDfe
Y
a

. We here make use of Lemma 5.2. So 

this requires some case work: the 𝑘 = 1	(𝑠𝑜	 T
-
= 1)  case and the 𝑘 > 1	(T

-
≠

1	𝑎𝑛𝑑	 T
-
> 0) case. For k = 1 we will get the known asymptotic formula of ∑ 𝜑(𝑛)Efe . 

Here we shall first repeat that proof: 

A𝜑(𝑛)
Efe

=
1
2 𝑥

h �A
𝜇(𝑑)
𝑑h

Dfe

� + 𝑂�𝑥A
1
𝑑

Dfe

�

=
1
2𝑥

h  
6
𝜋h + 𝑂 z

1
𝑥	{¡ + 𝑂

�𝑥  log𝑥 + 𝐶 + 𝑂 z
1
𝑥{¡

�

=
3
𝜋h 𝑥

h + 𝑂(𝑥 log𝑥) 

And for 𝑘 > 1, we present our generalization here. We make use of the other formula 

in Lemma 5.2, so we have 

A𝜑-(𝑛)
Efe

=
1
2 𝑥

h £A
𝜇(𝑑)
𝑑h-

Dfe
Y
a

¤ + 𝑂£𝑥 A
1
𝑑-

Dfe
Y
a

¤

=
1
2𝑥

h �
1

𝜁(2𝑘) + 𝑂 z𝑥
T�h-
- 	{� + 𝑂

⎝

⎜
⎛
𝑥 £

𝑥
T�-
-

1 − 𝑘 + 𝜁
(𝑘) + 𝑂(𝑥�T)¤

⎠

⎟
⎞

=
𝑥h

2𝜁(2𝑘) + 𝑂 z𝑥
T
-{ + 𝑂(𝑥) + 𝑂(1) =

𝑥h

2𝜁(2𝑘) + 𝑂
(𝑥) 

Note that our error term for k > 1 (𝑂(𝑥)) is actually smaller than the error term of k = 1 

known case. So it is a relatively good estimation with acceptable error bound. 

 Putting the results together, we have the following theorem: 

 

Theorem 6.1 For 𝑘, 𝑛 ∈ ℤ", 𝑥 ∈ ℝ"	and 𝑥 ≥ 1, we have: 

A𝜑-(𝑛)
Efe

=

⎩
⎨

⎧
3
𝜋h 𝑥

h + 𝑂(𝑥 𝑙𝑜𝑔 𝑥)	𝑖𝑓	𝑘 = 1;

𝑥h

2𝜁(2𝑘) + 𝑂
(𝑥)	𝑖𝑓	𝑘 > 1.

 

where the 𝑘 = 1 case is a known result and the 𝑘 > 1 is our new generalization of 

the Euler’s Totient of order k. 
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7. Some Other Discussions 

Another question we can ask is, given any n positive integers, what is the 

“probability” that their greatest common divisor is k-free? Note that it is a 

generalization of the problem which asks the “probability” of n given integers being 

coprime. 

 

Theorem 7.1 Given any n positive integers, the “probability” that their greatest 

common divisor is k-free, equals to T
�(E-)

. 

 

PROOF. The greatest common divisor of n positive integers being k-free means that for 

any prime p, none of them is a multiple of pk. The “probability” that an integer IS a 

multiple of pk is T
va

, so the “probability” that n integers is NOT all multiple of pk is 1 −

T
v´a

. And for different prime powers such “probabilities” are independent. Therefore the 

probability that n integers’ gcd is k-free is 

| z1−
1
𝑝E-{

v	vSnµ¶

=
1
1

∏ z1 − 1
𝑝E-{v	vSnµ¶

 

Since 𝜁(𝑠) = T
∏ kT� Y

¸�l¸	¸Wx¹º
, therefore our desired “probability” is T

�(E-)
.         \\\ 

 

 At last, we want to talk briefly about some further related topics. Our source of 

inspiration, of Euler’s totient of order k, is the Dirichlet convolution connecting Möbius 

function and Euler’s Totient: 	

𝜑(𝑛) =A𝜇(𝑑)
𝑛
𝑑

D|E

 

But this is not the only such formula involving 𝜇(𝑑). The point is for each such formula, 

there’s a potential to define a new arithmetic function of order k, and study its properties 

for fun or for further estimations in analytic number theory. For example, we may define 

the Mangoldt function of order k. Recall the definition of Mangoldt function Λ(n):  
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𝛬(𝑛) = ylog𝑝 , 𝑖𝑓	𝑛 = 𝑝µ,𝑚 ≥ 1;
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.  

 

And a convolution related to Möbius function: 

𝛬(𝑛) =A𝜇(𝑑) log
𝑛
𝑑

D|E

 

We may define Mangoldt’s function of order k by: 

𝛬-(𝑛) = A 𝜇(𝑑) log
𝑛
𝑑-

Da|E

 

(or by some other ways?) But whether such functions are useful remains to be 

discovered, and that’s not the central topic of this paper. 

 We may also note that, there is a product formula for 𝜑-(𝑛) , which is a 

generalization to the one of 𝜑(𝑛): 

 

Theorem 7.2 For 𝑛, 𝑘 ∈ ℤ", we have: 

𝜑-(𝑛) = 𝑛|z1−
1
𝑝-{

va|E

 

 

PROOF. Let 𝑛 = ∏ 𝑝�V¼S
�qT  where 𝑎� > 0. Expand the RHS yields: 

𝑛|z1−
1
𝑝-{

va|E

= 𝑛

⎝

⎜
⎛
1 −|

1
𝑝-

va|E

+ |
1

𝑝n-𝑝�-
vxa|E
v¼a|E

− ⋯+ (−1)S |
1

�∏ 𝑝�S
�qT �-VZZ	v¼a|E

⎠

⎟
⎞

= 𝑛

⎝

⎜
⎛
𝜇(1) +|

𝜇(𝑝)
𝑝-

va|E

+ |
𝜇(𝑝n𝑝�)
𝑝n-𝑝�-

vxa|E
v¼a|E

+ ⋯+ |
𝜇(∏ 𝑝�S

�qT )

�∏ 𝑝�S
�qT �-VZZ	v¼a|E

⎠

⎟
⎞

= 𝑛 A
𝜇(𝑑)
𝑑-

Da|E

= A 𝜇(𝑑)
𝑛
𝑑-

Da|E

= 𝜑-(𝑛) 

by Theorem 4.1.                                                      \\\ 

 

8. Sum-up and Ending Note 
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In this entire paper, we have gotten the following results. First, we study some 

convolution-type formulas of the Möbius function of order k (Theorem 3.1 and 3.2). 

Both of them can be used to define “counting functions” of k-free integers smaller than 

or equal to a given positive real number x > 1. Next, we define “Euler’s Totient of order 

k”, and give two convolution-type formulas regarding its connection with Möbius 

function (Theorem 4.1 and 4.2). 

Then we turn to the study of analytic properties. With the help of Theorem 3,1 and 

3.2, we explore the asymptotic formulas of function #k(x), which counts the k-free 

positive integers less than x and find a proof of Gegenbauer’s theorem of k-free integers. 

After that we go on to discuss 𝜑-(𝑛), and discover the asymptotic formula of its partial 

sum (Theorem 6.1). Lastly, we make some further discussions to related topics, like 

some probabilistic problem and product formula of 𝜑-(𝑛). 

Throughout the paper, Möbius function of order k, though not explicitly shows up 

everywhere, is our basic source of inspiration and a thread connecting all of our 

discussions. The importance of our study is that our results complement the studies of 

regarding Möbius function of order k by connecting it with other arithmetic functions. 

We define 𝜑-(𝑛)  and gives a thorough studies of its properties and asymptotic 

formulas of its partial sums. I hope our results can be not merely a study of some 

functions in analytic number theory, but be a typical example of generalizing arithmetic 

functions to a broader background as well, just like what we do to Euler’s Totient. 

As a note for future studies: if we keeps going on with the idea of order k 

generalization, perhaps we could discover a generalized result for Prime Number 

Theorem (of “order k primes”, maybe). Perhaps this can be start from a generalization 

of Mangoldt function, and hence Chebyshev’s functions, and some equivalence 

statements of PNT. For the studies in analytic number theory, the sky’s the limit! 
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