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ABSTRACT. Defined by Tom M. Apostol (see [2]), the Mobius function of order £ is
a natural generalization of Mdbius function which is one of the most important
arithmetic functions studied in analytic number theory. In this paper we study some
properties of Mobius function of order &, denoted by w, some of which are analogous
to ordinary Mébius function. This involves some summation formulas involving s We
also use some of them to study “ki-free integers”. And from here, we define Euler’s
Totient of order &, denoted by ¢, and study its properties and relation with u. We also
present asymptotic formula about ¢ with proof. Furthermore, we study the asymptotic

behavior of k-free integers with the help of yux.
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1. Introduction

Mobius function is one very important arithmetic function whose properties are
beautiful and pragmatic in connection with the study of other arithmetic functions and
analytic number theory. And a natural generalization of Mobius function, the Mdbius
function of order k£ which was defined originally by T. M. Apostol, is one central topic
of this paper.

A key operation between arithmetic functions in number theory is Dirichlet
convolution, an operation which is communicative and associative. This paper will not
focus on the general Dirichlet convolution, but some properties of the arithmetic
functions we discuss is of that exact form or a similar form. And some of such formulas
are especially useful to draw connections between different arithmetic functions and
deduce asymptotic formulas of partial sum of unfamiliar functions to familiar ones.

Another tool worth mentioning is Riemann zeta function. It is always miraculously
connected to all different subfields of analytic number theory. And some of our results
make use of {(s)’s properties in related to u(n) (like u(n)’s relation with 1/{(s)). Apart
from that, Riemann zeta function appears in some basic asymptotic formulas we make
use of as well to deduce more asymptotic formulas, like the partial sum of pi(n).

We begin with a review of the definition of the ordinary Mébius function wu(n) in
Section 2, and give some elementary properties of it which we will generalize to wu(n).
Then we begin our discussion of properties of . in Section 3. After that, define function
@k, which we shall call “Euler’s Totient of order £” in Section 4. We will also present
our results of several formulas relating Mobius function and Euler’s Totient of order £.

In Section 5 and 6, we discuss some asymptotic formulas. We begin with its relation
with . and a proof of Gegenbauer’s theorem of i-free integers (Apostol didn’t go into
detail of that proof in his paper). And with this theorem we easily estimate the
“proportion” of k-free integers. And in Section 6 we study asymptotic formulas
involving gi(n).

Note that without specified, the letter p or p; (p with some subscript) always denote
prime numbers in the set of positive integers. And for all arithmetic function we mean

a mapping from Z* to C, as usual. And = 3.1415926...

2. A Review of Mobius Function (and Euler’s Totient Function)




In this section we present a brief review of some basic known facts about Mdbius

functions (for details and further see [1]).

Definition 2.1 Mobius function is an arithmetic function w(n) defined as

u() =1;
u(n) = (—1)¥ if nis the product of k distinct primes;
u(n) = 0 otherwise.

From the definition we notice that w(n) = 0 if and only if # is not square free, by which
we mean that # contains a divisor which is a square number. A general definition of .-

free is the following:

Definition 2.2 An integer #n is kth-power free or k-free if there’s no prime p such that

p¥| n.

The rest of this section is devoted to the presentation of some properties of ()
without proof. Note that these results are not new; in fact they are special cases of our
new results regarding the properties of wu(n) (which we will prove), which we will

present in Section 3.

Proposition 2.1
1
2, 1@ = [
din
Here “|x|” denotes the greatest integer less than or equal to x, namely the floor

function.

Proposition 2.2 Let ¢(n) denotes Euler’s Totient function (the number of integers
coprime to n within [1, n)]), we have

o) =) ud)z

din

Proposition 2.3 Let ¢(x, n) denote the number of positive integers less than or equal to

X that are coprime to n. Then




ol = u@ ]

din

3. Mbobius Function of Order k and Its Properties
Mobius function of order £ is defined by Apostol in the following way:

Definition 3.1 Mobius function of order £ is an arithmetic function tu(n) such that:

pe (1) = 1;
u,(n) =0if nisnot “(k+ 1) — free”;

@) = (D" if n=p* Ko T M, where 0 < Ay, .., q; < K
U, (n) = 1 otherwise

Note that for k=1, p,(n) = u(n).

From the properties of Mobius functions and some numerical trials, we have

conjectured (and proved, see below) the following formulas regarding wu(n).

Theorem 3.1 For n,k,d € Z*, we have:

z 1 (d) = O if nisnot“k — free”;

1 otherwise.
dk|n

Theorem 3.2 For k,d€Z*, xR, x=>1 Y, u(d) EJ =1, and in fact a

general case is that

> w@| ] = #00

ds<x
Where we denote the number of k-free positive integers less than or equal to x as #i(x).
Note that for all positive integer k, 1 is k-free. This is from the definition of k-free and
the fact that 1 is not divisible by any positive power prime numbers. So the first formula

is the special case of the second one (k =1 case).

Apostol studied several properties of ux(n) himself, the following formula is one of

them which turns out to be a very important tool in our study.




Lemma 3.1 Forall k >1 and n € Z*, u,(n*) = u(n). Here u(n) is the Mébius
function (of order 1).

PROOF. By definition, p;(1%) = (1) =1 = u(1); if n is square-free, let n =
Py ... Dy, 50 nF = p % . p.* and therefore p,(n*) = (—1)" = u(n). Now if n is not
square-free, there exist prime p such that p?|n, so p?*|n*. Forall k > 1,2k > k + 1,

so p**1n*. And by definition, p;(n*) = 0 = u(n) in this case. A\

We will now prove our Theorem 3.1 and 3.2. Note that with the above lemma s

in our conjectures can be reduced to our familiar .

PROOF OF Theorem 3.1. By Lemma 3.1, it is equivalent to prove that for n,k,d €
Z+
0if nisnot“k — free”;

1 otherwise.

> u@ ={

dk|n
If n is not k-free, write n = p;** ...p, P Y1 .. p* where a4, ...,a, =k, and
0 <a;yq,--,a; < k. So all the none zero terms LHS are:

z u(d) = p(1) + ulpy) + -+ ulpy) + ulpipz) + -+ u(py ... o)

dk|n
- (e + (vt e (Y ()

— [t = 1)y = 0.

And if n is k-free, then the only d such that d*|n is 1. So
> u@ =p) =1
dk|n

A\

PROOF OF Theorem 3.2. By Lemma 3.1, it is equivalent to prove that for k,d € Z™,
x € R*,

> @ |2 = e

ds<x

We have:




ZMﬁbA— pD= D" (@

dsx <x dk|y 1sys<x dk|y
1sy<x

where the last step is obtained by changing the order of summation. Note that by

Theorem 3.1, Y4k, u(d) is 1 if and only if y is k-free, and is O otherwise. So

D1sysx 2dkly u(d) counts all k-free positive integers less than or equal to x. \\\

Apostol proved (see [1]) that each p; (n) is multiplicative. We can now consider

another summation and make use of this result:

Z i (d)

din
Let n =p,* ...p,%, each a; > 0, let d = p,P1..p,Pr, each b; > 0. So
e (d) = (™) ... e (p,Pr)

ZHk(d)z z i (d) ... z i (d)

dln d|p1%1 d|py%r

So

It is much easier to compute each summation .4, iy (d), this is

_ ai+1ifai<k;
”k(d)‘{k—u]faizk.

dlp;*i
Also we can study:
n
hen) = > ()5
din
by first proving that h; (n) is a multiplicative function for each n. Let n = p;%t ... p,.%"

and d = p;P1 ...p,Pr, where a; > 0 and b; > 0. We have

Tu@i=3 . Z@ml ) (e 255

dln b1=0 br=0
T at p as T
- [{ > w05 | =] [m@e
t=1 \bt=0 Pt t=1

With this relation the multiplicity simply follows. So we can simply study
Pt

P = ) ()

d|pt




This 1s much easier to calculate:

k-1
P; = (Z lptat_iJ> — |pe2e¥]

i=0

P = > )

d|pet

which follows from the definition and a similar argument as the above discussion.

4. Euler’s Totient of Order & and Its Properties
Euler’s Totient of order £ is our generalization of Euler’s Totient. We will present
our definition of Euler’s Totient of order & first, and then discuss a bit about how it

comes.

Definition 4.1 For a positive integer k, we define Euler’s Totient of order &, denoted by
@k, as an arithmetic function that g«(n) = the number of positive integers i less than or
equal to n such that gcd(n, i) is k-free. Here “gcd(n, i)” denotes the greatest common

divisor of n and i.

The original idea of such definition comes from Proposition 2.2, and we want to
generalize the Dirichlet convolution to the Mdbius function of order £. But what would
such generalization mean, as an arithmetic function of n? We have conjectured and
proved that it is the above Euler’s Totient of order k. This is illustrated in our theorem

below:

Theorem 4.1 For n,k,d € Z*, we have:
n n
0 = ) w( @)= > ud o
dk|n dk|n

Note that the second equality follows from Lemma 3.1.

Actually this result is a consequence of our next theorem (Theorem 4.2), which is

our generalization of Proposition 2.3. We first generalize ¢(x, n) into gi(x, n):

Definition 4.2 For x € R* and n € Z*, define ¢i(x, n) = the number of positive

integers i less than or equal to x such that gcd(n, i) is k-free.




Theorem 4.2 For n,k,d € Z* and x € Rt we have:

@r(x,n) = z e (d5) [%J = z u(a) [%J

dk|n dk|n

Note that Theorem 4.1 is a special case of the theorem above, by setting x = n.

PROOF. Clearly, L;C—RJ counts the number of positive integers less than or equal to x

that are the multiple of d*. Let d¥ = (p;)® ... (p,*)®, where py, ..., p, are distinct

prime factors of n whose kth power divides n and a; = 0. Since d* = (p;* ...p, ")k
Hence Y gk, 1(d) L;C—RJ counts:
all integers within [1, x]

— z number of multiples of each p;*

+ Z number of multiples of each (pipj)k

— z number of multiples of each (pipjpl)k + -

+ (—1)" x number of multiples of (p; ...py)*

by the definition of Mébius function (the other terms which involves a; > 1 all
vanishes). Hence by Inclusion-Exclusion Principle, ¥k, u(d) L;C—RJ counts all

integers within [1,x] that are not multiple of any p;, each counted without repetition.

And that is the number of integers in that interval whose greatest common divisor with

n is k-free, so ¥ gk, p(d) L;C—RJ = @ (x,n). \\\

5. Asymptotic Formulas Related to k-free Integers and Mobius functions
We begin our discussion of asymptotic formulas from this Section on, which
requires some tools in analytic number theory. We shall first give some known results

as lemmas which we shall make frequent use of (for details and further see [1]).




Lemma 5.1 For s> 1, — = Y1 )

) s where p(n) is the Mobius function, n € Z*.

Note that we shall only make use of the real-variable Riemann zeta function {(s),
definedas {(s) = Y51 %, n € Z*. And as commonly known is converges when s >

1.

Lemma 5.2 Let x > 1 and n € Z*, we have:

1
logx+C+0< ),ifszl;

1. x
ns - xl—S

nsx 1_S+{(s)+0(x‘5),ifs>Oands;t1.

Here we shall explain the notations we used. “log x” always denote natural

logarithm (with base e). C here denotes the Euler’s Constant, and € = lim (1 + % +

n—oo

§+ +%— logn). The “big-oh” notation is defined such that f(x) = 0(g(x))

where g(x) is positive-valued means that for sufficiently large x, there exist a constant
M >0 such that |f(x)| < Mg(x). And an equation like f(x) = g(x) + O(h(x))
means that f(x) — g(x) = 0(h(x)).

Lemma 5.3 Let x > 1 and n € Z*, we have:

n>x

for s > 1.

Recall that in Theorem 3.2 we find that number of k-free positive integers less than
or equal to x (a real number greater than or equal to 1) is Y4, u(d) L;C—RJ Denote the

number of k-free positive integers less than or equal to x as #i(x), so

#e(0) = D u(@ | .

ds<x

10




We will first try to find an asymptotic formula based on this, and see whether it is

helpful. Note that we assumed £ to be greater than 1, or else we have #,(x) =1 fork

=1.
#@) = ) w@ || = > u@ (% + 0(1)) - (Z u(d)%) +0()

dsx dsx d<x
u(d) u(d)
= x( g T + 0(x)
dz1 a>x

=x ”C(lc:)+0<2%> + 0(x)

d=1 a>x

= x (i + O(xl—k)> 4000 =+ 0(x) = 0(x)

409 (k)
Unfortunately, this result will not be so helpful, due to the relatively large error

bound of O(x). But we can do it in another way.

Lemma 5.4 For n, k,d € Z*, we have:

= ) (@

dk+1|n

PROOF. We prove by several case works on n. If n = 1, Clearly
D= 1= = > ud)
dk+1)1
If py,...,p; are all the primes such that p;**1|n, |u,(n)| = 0. And
Z p(d) = p) +ulpy) + -+ plprp2) + -+ pu(py .p) =0
dk+tin

As shown before in the proof of Theorem 3.1. Now if n = p* ...p,*p, 1%+ ...p/™,
where 0 < a4y, ..., a; <k, then | (n)| =1, and ¥ gk+1)q u(d) = u(1) = 1. Andif
n=p*..p% where 0<ay..,a, <k, then [ ()| =1 and ¥ k+1pu(d) =
pu(1) =1 as well. And our proof is complete. \\\

Our proof is a different one with Apostol’s proof in his paper. So we go into some

more details above.

11




Now by Theorem 3.1, we know that Y, jk+1,, u(d) = 1 if and only if n is (k + 1)-

free and equals to 0 otherwise. So we have (k is positive integer)

Hea@ =) > u(d) = ) L)
nsx dkti|p nsx

This is the formula that related (k + 1)-free positive integers and function y; (n). And

we can further derive Gegenbauer’s theorem of k-free integers with

a0 =) Y u@= Y ad= ) (w@d Y 1

X X
= > (k@)= D (u(d)( e +0(1)>
dk+isx dk+isx
X
= > D+ ). (W +ow)
deﬁ deﬁ
x 1 d 1
> h@ e+ 0 (x77) = x Z;i +0 (1)
deﬁ deﬁ
o u(d) u(d) N
=X de+1_ Z k1 +0<xk+1)
d=1 1
d>xk+1

L 1o > ! +o ﬁ)
=X| 7—>05—< _— xXk+
D) L, a1
d>xk+1

1 -k 0 1 X 0 1
= x| —— 4+ 0 (xi51 )= —— Zsy
e+ " (1) )+ 0 (x77) EDN (1)
which is exactly what Gegenbauer’s theorem states. So now we have

ta () = ) L ()] = z(kx—+1) +0 (xev1)

n<x
Therefore we can easily deduce the “proportion” of (k + 1)-free integers (k is positive

integer):

X 1
i e (@) (k+ 1) o (x"“) 1
- SV X T ((k+ 1)

12




Loosely speaking, that is to say if we choose a positive integer randomly, the probability

that this integer is (k + 1)-free is . Or the “proportion” of (k + 1)-free integers

((k

among all positive integers is A special case is k = 1, which shows that the

J(k+1)’

“proportion” of square-free integer among all positive integers is (—) which is %.

This is approximately 0.60793, so a slightly more that 60% of positive integers are

square-free, which is more than a half.

6. Asymptotic Formula Involving ¢«

In this Section the goal is to study the average order of . What we will do is to
deduce an asymptotic formula for its partial sum, namely ).,<, @, (n). Here k£ and n
are positive integers and x is real number greater than 1.

We begin with our relation

0 = ) w( @)= > ud o
dk|n dk|n

which our Theorem 4.1. So we have

Yo =) wd

n<x nsx dk|n

Therefore,

D ok =) > ud Z u@a= ) | W@ ) q

n<x nsx dk|n dk<x qsi

qdk<x ak
1,x4\2 X
- 3 (wo(3G) +o )
dsxk

Here we use the simple fact that Z 2 q= %(d—k) + 0 ( ad ) This is because

13




Gerom) G +o(G)+ow

5, L)

2 2

1/x\? X
=3(3) +o (%)
as wanted. So up to now we have
1 u(d) 1
2 o =57 ), G |+0|x )
d

n<x 1 1
dsxk <xk

u(d)
de’

Now there are two parts that need to be reduced. One is ), 1 and the other

d<xk

K,

oneis =Y 1 ik inside the big-oh notation. We first figure out the Y,  1~—="term.
X T dsxkd dsxk d
We write
KD ~oud X pd)
dzk — dzk d2k
1 d=1 1
d<xk d>xk

where the first term is just — by Lemma 5.1. And we continue to estimate the

¢(2k)
second term:
pd)  ~owud) pud) ~owpd) 0 1
dzk — dzk dzk — d2k + dzk
1 =1 1 d=1 1
d<xk d>xk d>xk

:{(le)_}_0<<x%)1_2k>

The last step follows from Lemma 5.3, since we know that 2k > 1 for positive integer

2 =z o)

1
ds<xk

This is an asymptotic formula related to Mobius function, which is our

k. So we have:

generalization of the known one:

o) =m o)

dsx

14




. . 1
We now turn to our discussion of ;Z 1 d— We here make use of Lemma 5.2. So
d<xk

this requires some case work: the k =1 (so %: 1) case and the k>1 (% *
1 and % > 0) case. For k=1 we will get the known asymptotic formula of Y., @(n).
Here we shall first repeat that proof:

go-be() )

nsx d<x
1 6 1 1
=-x2 —+0<—) +0|x logx+C+0<—)
2 2 X X

3 2
=X + O(xlogx)

And for k > 1, we present our generalization here. We make use of the other formula

in Lemma 5.2, so we have

R R O3 R B

nex dsx% dsx%
1k
1-2k k
= %xz <—{(;k) +0 (xT )) +0| x f_ F ) +0(x™)
2 1 xZ
= 220 +0 (xk) +0(x)+001) = 2020 + 0(x)

Note that our error term for £ > 1 (0 (x)) is actually smaller than the error term of k= 1
known case. So it is a relatively good estimation with acceptable error bound.

Putting the results together, we have the following theorem:

Theorem 6.1 For k,n € Z*,x € Rt and x > 1, we have:

3
—x + O0(xlogx)if k =1;

D om={"" .

nsx 2{(2]()+0(x)lfk>1

where the k = 1 case is a known result and the k > 1 is our new generalization of

the Euler's Totient of order k.

15




7. Some Other Discussions
Another question we can ask is, given any n positive integers, what is the
“probability” that their greatest common divisor is k-free? Note that it is a
generalization of the problem which asks the “probability” of n given integers being
coprime.

Theorem 7.1 Given any n positive integers, the “probability” that their greatest

1
common divisor is k-free, equals to ——.
free, eq D)

PROOF. The greatest common divisor of n positive integers being k-free means that for

any prime p, none of them is a multiple of p*. The “probability” that an integer IS a

multiple of p¥ is pik, so the “probability” that n integers is NOT all multiple of p*is 1 —

p%. And for different prime powers such “probabilities” are independent. Therefore the

probability that n integers’ gcd is k-free is

[] (=5 -——

p prime 1
l_[p prime <1 - W)
p
Since {(s) = 0 primle (1_ % y therefore our desired “probability” is ﬁk) AW\

At last, we want to talk briefly about some further related topics. Our source of
inspiration, of Euler’s totient of order £, is the Dirichlet convolution connecting Mobius
function and Euler’s Totient:

OEDWIGE
dn
But this is not the only such formula involving u(d). The point is for each such formula,
there’s a potential to define a new arithmetic function of order &, and study its properties
for fun or for further estimations in analytic number theory. For example, we may define

the Mangoldt function of order k. Recall the definition of Mangoldt function A(n):

16




_(logp,if n=p™,m=1;
A(m) = { 0, otherwise.

And a convolution related to Mdbius function:
n
A = ) u(d)log
din
We may define Mangoldt’s function of order & by:
n
M) = ) u(d)log
dk|n
(or by some other ways?) But whether such functions are useful remains to be
discovered, and that’s not the central topic of this paper.
We may also note that, there is a product formula for ¢,(n), which is a

generalization to the one of ¢(n):

Theorem 7.2 For n, k € Z%, we have:

Pr(n) = nl_[<1 —pik)

pkin

PROOF. Let n = [[j=;p;* where a; > 0. Expand the RHS yields:

10381 Tl [T I

pkin pkin pi¥|n all pj¥|n
pjkIn

- (1)+1—[u(p) upp) 1—[ u(Tj=1p)

Ko, K
pkin pikin PiPj all p;*|n (l_[] 1p1)
pjkln
u(d) n
=n Y B2 = @2 = o
dk|n dk|n
by Theorem 4.1. AW\

8. Sum-up and Ending Note

17




In this entire paper, we have gotten the following results. First, we study some
convolution-type formulas of the Mdbius function of order k& (Theorem 3.1 and 3.2).
Both of them can be used to define “counting functions” of k-free integers smaller than
or equal to a given positive real number x > 1. Next, we define “Euler’s Totient of order
k”’, and give two convolution-type formulas regarding its connection with Mdbius
function (Theorem 4.1 and 4.2).

Then we turn to the study of analytic properties. With the help of Theorem 3,1 and
3.2, we explore the asymptotic formulas of function #(x), which counts the k-free
positive integers less than x and find a proof of Gegenbauer’s theorem of k-free integers.
After that we go on to discuss ¢y (n), and discover the asymptotic formula of its partial
sum (Theorem 6.1). Lastly, we make some further discussions to related topics, like
some probabilistic problem and product formula of ¢y (n).

Throughout the paper, Mobius function of order &, though not explicitly shows up
everywhere, is our basic source of inspiration and a thread connecting all of our
discussions. The importance of our study is that our results complement the studies of
regarding Mdbius function of order k& by connecting it with other arithmetic functions.
We define ¢,(n) and gives a thorough studies of its properties and asymptotic
formulas of its partial sums. I hope our results can be not merely a study of some
functions in analytic number theory, but be a typical example of generalizing arithmetic
functions to a broader background as well, just like what we do to Euler’s Totient.

As a note for future studies: if we keeps going on with the idea of order &
generalization, perhaps we could discover a generalized result for Prime Number
Theorem (of “order k primes”, maybe). Perhaps this can be start from a generalization
of Mangoldt function, and hence Chebyshev’s functions, and some equivalence

statements of PNT. For the studies in analytic number theory, the sky’s the limit!

18
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