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Abstract

In this paper, we established two new Wilker-Type inequalities for

trigonometric functions and proved the validity of such inequalities .

We have also given a concise proof of conventional Wilker’s

inequality and of Hungens-type inequality.
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1 Introduction
In 1989, J.B.Wilker[2]proposed two open questions in the American

Mathematical Monthly, among which the first one was:
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the second one was:

Problem 2. If
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They have aroused remarkable interest of many mathematicians who conducted a

huge number of researches upon this topic.

J.S. Sumner et al.[3] proved that the truthfulness of (1.1) and (1.2) resulted in the



following theorem 1:
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Furthermore, 4
16


and
45
8 are the best constants in(1.3).

Recently, Zhu[6] gave a new simple proof of inequalities(1.1), and Zhang and

Zhu[4]gave a new elementary proof of Wilker’s inequalities(1.3).Zhu[5] showed some

new Wilker-Type inequalities for circular and hyperbolic functions. L.Zhu and Marija

Nenezić[11]gave new approximation inequalities for circular functions.

Another inequality, the Huygens inequality [13], aroused our interest in the process

of researching. Such an inequality asserts that

If , then

(1.4)

In recent years, lots of papers concerning Huegens inequality has arisen, including

but not limited to Zhu’s[15], in which he has shown some new inequalities of the

Huygens-type for trigonometric and hyperbolic functions; Chen’s[16], in which he has

given some new inequalities of the Huygens-type for inverse trigonometric and

inverse hyperbolic functions; and also Chen and Cheung’s,[14] in which they have

shown but have failed to demonstrate an exact proof of Wilker and Huygens type

inequalities including the following
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Furthermore, 4
16


and
20
3 are the best constants in (1.5).

Subsequently, we establish two new Wilker-Type inequalities theorem 3 and theorem

4----the main results of this paper. We’ll show a concise proof of Wilker’s inequality

(1.3) along with a proof of (1.5) using similarly succinct methods.

2 Some Lemmas

Lemma 1 (see [12], P.20, P.23). For 1n ,we have

where are a type of numbers called the Bernoulli Numbers,

defined by the following formula :
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Lemma 2(see [7-11]) let nB2 be the even-indexed Bernoulli numbers, Nnn  ,1
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Lemma 3(see [12], P.23,[5]). We know that the power expansions of tangent

function and cotangent function are the following
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So, we can get the power expansions for the following functions
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The formula (2.6) holds true because of the existence of the equation as follows:

)cot(tan
2
1

cossin2
cossin

cossin2
1

2sin
12csc

22

xx
xx
xx

xxx
x 






(2.7)
2)!2(

)22)(12(2)12(
2
1)(sec

2
1

cos
sin

2

32

2
222

3


 






x
n

xBnnx
x
x

n

n

n
nn

(2.8)0
)!2(

)22)(12(2
2
11)(cot

2
1csccot

2

32

2
2

3
22  







x
n

xBnn
x

xxx
n

n

n
n

(2.9)
2

0
)!2(

)22(1csc
1

12

2
2 

 






x
n

xB
x

x
n

n

n
n

(2.11)
2

0
)!2(

)22(
2
1

2
1

)!2(
)22)(12)(22(

2
11

sin
1

1

12

2
2

2

32

2
2

33





















x
n

xB
x

n
xBnn

xx

n

n

n
n

n

n

n
n

The formula (2.11) holds true because of the existence of the equation as follows:
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3 main results of this paper
Theorem 3. If
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Holds true. Furthermore,
45
8 is the best constant in (3.1).
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By using (2.1)(2.3)(2.4)(2.6)(2.7),we can obtain
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Therefore, holds true for any such that

This implies that is strictly increasing on .
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Which demonstrates that for all n>2, .

Given the fact that all the coefficients of are positive integers, is
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Furthermore ,The proof of Theorem 4 is complete.

4 A Concise Proof of Theorem 1 and Theorem 2

4.1. A Concise Proof of Theorem1
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4.2.A Concise Proof of Theorem2

Let

Thus the derivative of such a function could be expressed as follows:
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Then it can be reasonably obtained that

And thus

As we know

So, is strictly increasing on ,

At the same time, we find and .

Now, the proof of theorem2 is complete.
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