New Wilker-type Inequalities for Trigonometric Functions
Junyang Chen, Yue Pan, Shuyang Zhang

Abstract
In this paper, we established two new Wilker-Type inequalities for
trigonometric functions and proved the validity of such inequalities .
We have also given a concise proof of conventional Wilker’s
inequality and of Hungens-type inequality.
Key words: Wilker’s inequalities, Hungens-type inequality,
trigonometric Functions, power series expansion

1 Introduction

In 1989, J.B.Wilker[2]proposed two open questions in the American

Mathematical Monthly, among which the first one was:

Problem 1.If 0<x< % ,then

(s1nx)2+ tan x 59 (1.1)

X

the second one was:
Problem 2.If 0<x< % ,find the largest constant c such that

sin x tan x

)+ >2+cx’ tanx (1.2)

X X

(

They have aroused remarkable interest of many mathematicians who conducted a
huge number of researches upon this topic.

J.S. Sumner et al.[3] proved that the truthfulness of (1.1) and (1.2) resulted in the




following theorem 1:

Theorem 1.If 0<x< % ,then

sin x tan x

)+
X

1
—?x3 tan x < ( —2<ix3tanx (1.3)
T 45

X

1
Furthermore,—?and iare the best constants in(1.3).
Vs

Recently, Zhu[6] gave a new simple proof of inequalities(1.1), and Zhang and
Zhu[4]gave a new elementary proof of Wilker’s inequalities(1.3).Zhu[5] showed some
new Wilker-Type inequalities for circular and hyperbolic functions. L.Zhu and Marija
Nenezi¢[11]gave new approximation inequalities for circular functions.

Another inequality, the Huygens inequality [13], aroused our interest in the process
of researching. Such an inequality asserts that

If 0<x<%,then

sinx. tanx
)+

X X

2( >3 (1.4)

In recent years, lots of papers concerning Huegens inequality has arisen, including
but not limited to Zhu’s[15], in which he has shown some new inequalities of the
Huygens-type for trigonometric and hyperbolic functions; Chen’s[16], in which he has
given some new inequalities of the Huygens-type for inverse trigonometric and
inverse hyperbolic functions; and also Chen and Cheung’s,[14] in which they have
shown but have failed to demonstrate an exact proof of Wilker and Huygens type
inequalities including the following

Theorem 2. If 0<x< % ,then

smx)+tanx_3<gx3 tan x (1.5)
T

ix3 tan x < 2(
20 X




Furthermore,gand % are the best constants in (1.5).
V4
Subsequently, we establish two new Wilker-Type inequalities theorem 3 and theorem
4----the main results of this paper. We’ll show a concise proof of Wilker’s inequality

(1.3) along with a proof of (1.5) using similarly succinct methods.

2 Some Lemmas

Lemma 1 (see [12], P20, P.23). Forn>1 ,we (-1)"'B, >0, have
where B, (neN) areatype of numbers called the Bernoulli Numbers,

defined by the following formula :

Lemma 2(see [7-11]) let B,, be the even-indexed Bernoulli numbers,n>1,n € N
then

221 (2n+2)2n+1) | i
22n+1 1 7Z_2 |an

27 —1 (2n+2)(2n+1)
92m+2 _q J)

Lemma 3(see [12], P.23,[5]). We know that the power expansions of tangent

function and cotangent function are the following

2n-1

_ S 2n 2n X z
tan x = Z (2*" -1)2*"|B,, @ x| < 5 (2.1)
5 2n 1
cotx—;—;2 2o G 0<|x|<7 (2.2)

So, we can get the power expansions for the following functions

2n 2

n n T
sec’ x = (tan x)’ _Z(z2 ~1)2"(2n - l)Ian o |x|<5

(2.3)




1 ) 2n71

csc? x = (—cot x)'——2 > 2% (2n- 1)|an o 0<|x| <7 (2.4)
n=1
5 5 1 o 2 2n71
cot’ x=cscix—l=—+ 2 (2n—1)|32,,|(2n)!—1 0<|x|<m (2.5)
cse 2x = 4+ 222" (2> -2)[B X 0<|x<Z (2.6)
2x 2y 2

The formula (2.6) holds true because of the existence of the equation as follows:

1 1 s1n x+cos’x |1
csc2x =— =—(tanx +cot x)

sin2x 2 sin x cos x 2sin xcosx

O
. 2)1—3
sin x 3 2 2 i
Cos3x——(sec x) = 2;(2 ~D2*"(2n-1)(2n— 2)|an ) |x|<2 (2.7)
1 2n73
cotxcsczx:—a(cot )————222"(211 N 2)|an o O<|x|<7 (2.8)
Zn—l T
cscx=—+Y (2" =2)|B 0<|x|l<= 2.9
XZ( )\zn(z), X[ <3 (2.9)
cotx csc x = (—csc x)’ 1 i 2n-1)(2*" -2)|B X 0<|x|<£ (2.10)
x? >l (2n)! 2
L1 li(zzn 2)(2n—1)(2n-2)|B,, | X
sinx  x’ 24 2 2m)
1 1 2nl T
+—+— B 0<|xl<— 2.11
- 2;( )\2,,(2), X[ <3 (2.11)

The formula (2.11) holds true because of the existence of the equation as follows:

1

sin’ x

1 1 1 L1
=—(—cscxcotx) +—cscx=—Ccscx)"+—cscx
2 2 2




3 main results of this paper

Theorem 3. If0< x < % ,then

=S|o

(

)+ 2>—x
X X 45

sinx., tanx _ 8 4(tanxj (3.1)

X

Holds true. Furthermore,%is the best constantin (3.1).

sin® x + x tan x — 2x?

Proof .Let f(x)= then
tan x ° 5
( )
6
(sin2x+tanx+xsec2x—4x)x6(tan )7 —(sin® x + x tan x — 2x7)[x (tanx) 1
f(x)= xt x
anx.
x(—= )7
where
6 6 1 )
stanx.o., s, tanx - 6 ¢ tanx — xsec” x —tanx
X (— =6x(—) +—x 7
e R R N
thus
Fx) = 7x tan x(sin 2x + tan x + xsec’ x —4x) — (sin” x + x tan x — 2x°)(36 tan x + 6x sec’ x)
tanx
( )7
__ 8K)
Ty (tanx)7
where

g(x) = 7x tan x(sin2x + tan x + xsec’ x —4x) — (sin” x + x tan x — 2x*)(36 tan x + 6x sec” x)

=14xsin® x — 36sin” x tan x + 12x° sec® x — 35x tan® x + x* sec’ x tan x + 44x” tan x

%—35xsec2x+x2%+44x2;

=sin’ x(14x —36tan x + 12x° — -
sin” xcos” x sin xcos” x sin x cos x




< 2 2 s 2 2
;8in” x +Cos” x , Sin” X +Cos” x

=sin’ x(14x —36tanx +12x° —————— —35xsec’ x + x> — —— +88x” csc2x)
sin” xcos” x sinxcos” x
. sin x
=sin’ x(14x — 36 tan x +12x’ sec® x + 12x” csc” x — 35xsec’ x + x° —+ 90x> csc2x)
COS” X
s 2
=sin” x-s(x)
where

sin x

cos’ x

+90x? csc2x

s(x)=14x —36tanx +12x” sec’ x + 12x” csc? x — 35xsec” x + x°

By using (2.1)(2.3)(2.4)(2.6)(2.7),we can obtain

o 2n 1 2n72
s(x)=14x-36) 2% (2" —1)|an +12x 222"(22" )(2n-1)B,,
n=1 2 ) n=l1 (2 )'
2n7 2n73
+12x° (=) +12x°) 2*"(2n-1)|B + N0 _ 1y 2n—1)(2n—2)|B
( ) Z ( )B,, a2 Zzl X X )B,, 2n)!
2n— 2n—1
—35x» 2 (2" —=1)(2n—-1)B, | ——+90x*(—) +45x> Y 2°"(2*" -2)|B
z ( )( )| 2n (2 )| ( ) z ( )| 2n|(2 )'
0 x2n+l 2n71
=7lx+ ) (24n2”" +33-2"" =90)2"'|B,, 7 )'+222" (2 - 1)(2n—1)(n—1)|32n )
n=1 n=2
2n—1
— > (70n+1)2*"(2*" -1)|B
nz]:( ) ( )| 2n|(2 )'
0 x2n+l 2n71
=7lx+ ) (24n2”" +33-2"" =90)2"'|B,, 7 )'+Zzz" (2 - 1)(2n—1)(n—1)|32n )
n=1 n=2
211—1
—Tlx— Z(7on +1)27 (2% - 1)|32n
n=2 (2 )'
© 2n+1 211—1
= (24n2*" +33-27 - 90)2*" an +Z(2n —73n)2*"( 22”—1)|an )
n=1 n=.
0 2n71
=Y [24(n—-1)2*"% +33-2"2 -90)2*"*|B, | ———+ > (2n* —=73n)2*"(2*" - 1)|B
nZ:;[ ( ) ) 2n-2 (2 _2)' nZZ:( ) ( )| 2n|(2 )'
| x2n—1
—Z[(24n22" 249.27"2 -90)(2n)(2n—1) Z"T +4(2n* = 73n)(2*" —1)]2*" 2 BMW
n=2 2n n):



2n7

(2m) o (ford: = 0,when n=2)

— ian22n—2 an z 2n 2

n=2 (2 )' =3

2n

Where, @, = (24n2%" +9.2%" - 90)(2n)(2n — 1)| 2n-2

2n

+42n* =73n)(2°" 1)

Theorem 2 shall be correct if we can successfully prove the following inequality:

a,>0,when nz=3

According to lemma 2, we have

|B2n_2 22n _ 1 . 7[2
B,,| ~ 2" -1 (2n)(2n-1)
So

2211 _ 1 ﬂ_Z

= am(2n—1) +4(2n" =73n)(27" 1)

a, > (24n2%"% +9.22 —90)(2n)(2n —1)

2n
=(24n2*"% +9.2"" 2—90) 2 11 -7t +4(2n" =T3m) (2" ~1)
22/1 1
I 22772 4+ 977 .27 — 907" +4(2n” — T3n)(27 7~ 1)]

22" —1
=mbn, where,

b, =[24n7*2*" + 977 - 2" —90z” +4(2n” - 73n)(2*" 7 —1)]

=24n* 2" + 977 - 27" +8n° - 277 +282n 2821 - 27" —8n* —907°
b, =11890-11610>0

b, = (24nn’ +87° +8n”> —282n)2°" + (282n —907°) + (7 - 2*"* — 8n?)
=¢, 2" +(282n-907%) +(7* - 2*"* - 8n*)

where

c, =24nx’ +8n° +8n” —282n

When 7>3 (282n-907*)>0,(z*-2*"7 -8n")>0



And when” =9 ¢, =24nx’ + 877 +8n” —282n > 216n +8n” —282n = (8n — 66)n > 0
We can easily obtain

¢, =1047° —1000~1025-1000> 0

c; =12877 —1210~1262-1210> 0

c, = 1527 —1404 ~ 1498 —1404 > 0

c, =176 —1582~1735-1582 >0

¢, =3007° —512>2700-512>0

So b,>0when” >3 of cause, @, >0 when? >3,
As we can see ,all coefficients of the polynomial s(x) are positive integers.

When* > 0,5(x) >0 g(x)= sin® x-5(x)>0

g(x) 20

g tanx B
7x°( )’

when x>0, f'(x)=

X

we can conclude that  f(x) is strictly increasing on (O,%)

so  f(x)> lir(l)l+ f(x)

8

Furthermore lim /(x)=7< and the proof of Theorem3 is complete.

Theorem 4. 1f0< x < % ,then

( 'x )t X _2>ix4(sinxl (3.2)

Holds. Furthermore, %is the best constant in (3.2).




Proof.

Let
X%+ Lsin2x —2sin’ x
S = sinx. >
( ) !
Easy to find that
. 20
(2x+ ls1n 2x+xcos2x—2sin2x)x (smx) 7 —(x*+ ¥ sin2x - 2sin x)[x%w) T
S'(x)= sinx. > ’ )
( ) i

Where

sinx 2 sinx 2 20 sinx. = xcosx—sinx
[x6(7)7]'=6x5(7)7 +x°— Z ( )7

Thus it can be reasoned that /!

where

g(x) =7xsin’ x(2x + xcos2x — %sin 2x)—(x* + %sin 2x —2sin” x)(22sin’ x + 20xsin” x cos x)
= —21x’sin’ x + 6x” sin’ x — 3xsin® x cosx —20x” sin” x cosx + 44sin’ x

=sin’ x(6x° +44—21x* csc® x —3xcotx — 20x’ cot x csc” x)

=sin’ x- h(x)

where i(x) = 6x* + 44 —21x" csc” x —3xcot x —20x° cot xcsc” x



By using(2.2)(2.4)(2.8),we can get

2n71

h(x)=6x" +44 - 21x( +222"(2 1)|B2n( )|) 3x(——222” 2l 2 ),)
n=l1
2n73
+20x°(——+—= Y 2" (2n—-1)(2n—2)|B
o Z (@n=D@n-2)B, |75 )
o 2n
—6x7 + (24— 420)2”" BZn( )+10222”(2n D(2n—2)B,, @ ),
n=l1
© 2 2n
= 6x7 — 62>+ (24— 42n)2” BZH( ))+10222"(2n D(2n -2)B,,| > a7
n=2
0 2n © 2n
=3 a,2”|B,| =— =>"a,2%|B,,| =
= 2m)! = (2n)!
Where

a, =102n—1)(2n—2)—42n + 24 = 40n*> —102n + 44

Let

a(x)=40x" —102x + 44

a'(x)=80x-102

Therefore, a'(x) =80x—102 >0 holds true for any x such that x> 2.

This implies that a(x) is strictly increasing on (2,+).

Thus, when x €(2,40), 4(x)>a(2)=0

Which demonstrates that for all n>2,a, > 0.

Given the fact that all the coefficients of 4 (x) are positive integers, h(x) > 0 is
true for every e (O’%) which would in turn prove that g(x)>0

And as 7x"(C"E )7 is surely greater than zero, this would indicate that f"'(x) , while

Xe (O,%) , is also positive.

Vs
we can conclude that f(x) is strictly increasing on (0,5)




So, f(x)> lirg} f(x)

. 2
Furthermore 1M /(x)= 45 ,The proof of Theorem 4 is complete.
4 A Concise Proof of Theorem 1 and Theorem 2

4.1. A Concise Proof of Theorem1

.2

sim“x 1 2
Let f(x): S =

X tanx x x tanx

: g(x)

then S () ==

x°®sin® x
where g(x) =2x" +6x sin x cos x — 5sin’ x cos x — 3xsin” x — 2xsin* x

Direct calculation yields  g'(x) = 2sin’ x cos x/(x)

where  h(x)=6x"cotxcsc® x+3xcsc’ x —9cotx —4x

By using the power series expansion of (2.2)(2.4)(2.8),

2n—3

h(x) = 6x [———Z(2n—1)(2n 2)2* 2,,|(2 )']
+3x[—+2(2n—1)2 "B, (2 )']
ot i LN

NS 2"( 2m)!
0 - x2n—1
= ;[3 —(2n-1)(2n-3)]3-2"|B,, o
=§[3—(2n—1)(2n—3)]3-2"Bumw

since  g'(x)=2sin’ xcosxk(x) , when x e (0,%), sin’ xcosx > 0



So, g&'(x)=2sin’ xcosxh(x)<0
Then g(x) is decreasing on 0 ﬁ) Now g(0)=0, so, g(x)<0
b 2 .

Therefore, f'(x)= % <0
x°sin” x

So, f(x) is strictly decreasingas x increases on (O,%).

x—0"

At the same time,we find lim f(x) = % and lim f(x)= g . then the proof
-2 4

2
of theorem1 is complete.

4.2.A Concise Proof of Theorem2

2sin x +tan x — 3x

Let f(x)=

x* tan x

Thus the derivative of such a function could be expressed as follows:

~ (2cosx + sec’ x —3)x" tan x — (2sin x + tan x — 3x)(4x’ tan x + x* sec” x)

S'(x) =
x® tan® x
1
= -g(x)
x” tan® x
where g(x) =2xsin x—8sin x tan x — 4 tan” x + 9x tan x — 2xsin xsec’ x +3x” sec’ x
: 3
sin” x
=—7>—h(x)
CoS” X
2 1
And where h(x)=-2x—8cotx—4cscx+9xcotxcscx+3x" ——
sin” x

By using the power series expansion of (2.2)(2.9)(2.10)(2.11), we can get



2n—1

. 1 N 2n
h(x)_—2x+8(—;+n2:;2 B, |~ o ~2)8,, @
Zn 2
+9x (——2(22"_2)(2” 1)|BZ" (2n )v)
2n—3
+3x2(_+ 2(22" 2)(2n-1)2n-2)[B, | 2 ),)
+3x2(i+li(22"—2)|3 ﬂ)
2x 25 " (2n)!
l i , s 2n—]
:_Ex+;[8 2% _4(2%" ~2)-9(2n-1)(2*" - 2)]B,,| — 2n)!

2n+l

+2 Z(zz" 2)(2n-1)2n - 2)|BZ,,W 5;( 2 U%
:_%x+;x+2[8 27 42 —2)-92n-1)(2" - 2)]|B,, (22”_)1‘
+2 2(22" 2)(2n-1)2n-2)B,, 2’7)1'+ 2(22"2 2)2n)(2n-1)B,, (:;,
_;[8 27 42" =2)-9(2n—-1)(2*" =2)+ = (22" 2)2n-1)(2n-2)+= (22”2 2)(2n)(2n - 1)||2;2 18., (22,,)1'
-Salpts
Where,

d, =8-2"—4(2" -2)-92n-1)(2" -2)+ = (22" 2)2n-1)(2n-2)+= (22"2 -2)(2n)(2n— 1)|1§"2

| 2n

_ 2n 2n 2n-2 |l;2n—2
=427 +8+3(1 -2 = 2)(2n -+ 32" - 2)2n -1

| 2n

By careful calculation, d, =0,d; =216 > Ocan be gained.



When n=4,d,>0 istrue.

Then it can be reasonably obtained that

n—1

>0

Zn

(2)' Z |2"(2)'

And thus g(x) =" h(x)>0
COS X

As we know  f'(x)= -g(x)>0

x> tan® x

So, f(x) is strictly increasing on (&%) ,

. 16
At the same time, we find lim f(x)=% and lim f(x)=— .
x—0" T VA

X
2

Now, the proof of theorem2 is complete.
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