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Abstract

A common method of selling items is via auction. In an auction, each bidder

bids a certain amount of money, and the bidder bidding the most is the winner.

The amount of money each bidder must pay is variable depending on the type

of auction. These auctions can also be used as a model for other real world

conflicts. In this work we focus on all-pay auctions and extend existing results in

the literature for a generalized forfeit function. Using this model of an auction

we can model a trade war between two countries. We will also outline future

intentions to investigate the results of auctions with more forms of the forfeit

function, different natures of bidders, and more prizes. These results would allow

sellers to know the optimal auction in which to sell items and tell bidders the

optimal bid they should make.

Keywords: All-pay Auction, Auction Forfeit Function, Economic Model, Tar-

iff, US-China trade war
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1 Introduction

For thousands of years, auctions have been used as a method for selling objects. There

are four main types of auctions that are commonly used. The first type of auction is the

English auction. In this type of auction, the seller continually raises the price of the item

until only one person is willing to pay, and the item is sold at this price. A second type

of auction is the Dutch auction. In this auction, the seller sets an extremely high price

and continually lowers it until a bidder is willing to pay. A third type of auction is the

first-price sealed-bid auction. In this type, bidders all bid simultaneously and the bidder

with the highest bid wins and pays that bid. A fourth type of auction is the second-

price sealed-bid auction, where bidders also bid simultaneously, and the bidder with

the highest bid wins but pays the second-highest bid. These four types of auctions have

already been analyzed extensively with the independent private values model. In this

model, bidders are risk-neutral and only know the value of the object to himself. In this

model, the first-price auction is equivalent to the Dutch auction, while the second-price

auction is equivalent to the English auction. Another significant result relating to the

independent private values model is the revenue equivalence theorem, which says that

when information is independently and equally distributed, the revenue earned by the

seller is constant regardless of the type of auction [5]. One last phenomenon associated

with the independent values model is the winner’s curse [6], which means that winner

tend to overestimate the value of the object. This winner’s curse is demonstrated in

the field of oil. Petroleum engineers found that oil companies earned low profits due to

this phenomenon [7].

Although the four auctions previously described are the most popular ones, there

are some more variations. The next two types of auctions are the war of attrition and

all-pay auction. In both of these, the bidders who don’t win must pay the value of their

bid. However, in the former, the winner pays the second-highest bid while in the latter,

the winner pays the highest bid. There are also variations of the all-pay auction where

the non-winning bidders pay different amounts based on all of the bids. One example

is a constant entrance fee, or the bidders paying a fraction of their bid. These auctions

are not as prominent, but are still useful. They can also be used as a model for many

other systems. Conflicts among animals [3] can be represented by the war of attrition.

All-pay auctions can be used to model the arms race [8] and wars [10].This type of

auction can also model rent-seeking scenarios such as lobbying [4] or competition with

sunk investments [9].

The two most notable papers in this field are by Milgrom and Weber [2] and Krishna

and Morgan [1]. The paper by Milgrom analyzed the expected selling prices and bidding
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strategies of the second-price auction, English auction, and the first-price auction, as

well as how they compare to each other when all bidders are risk-neutral. Furthermore,

it reveals how the results of auctions are changed when new information is publicly

revealed, a reserve price is set, or an entrance fee is set. Finally, the paper investigates

when bidders are risk-averse rather than risk-neutral. A second prominent paper in

this field is by Krishna and Morgan [1]. This paper expands on the results of Milgrom

by calculating the bidder strategies and generated revenues of the war of attrition and

all-pay auction. Then it ranks the revenues generated by these two auctions against

those generated by the first and second-price auctions. Lastly, it compares the bidder’s

expected payoff for different types of auctions. There were also multiple other papers

that analyzed all-pay auctions. Amann and Leininger analyzed the case with two

bidders [15]. The behavior of bidders in an all-pay auction with incomplete information

was studied in both [12] and [14]. Lastly, Che and Gale studied the relationship between

all-pay and first-price auctions [13]. This paper will extend these works by generalizing

these theorems and results to all-pay auctions with different forfeit functions.

In this paper, we extend the results of Krishna and Morgan [1] to all-pay auctions

with different forfeit functions for all the losing bidders. Specifically, we will examine

auctions where there is an entrance fee in addition to paying the bid, both when the

fee is returned to the winner and when it is not. We will also examine when the forfeit

function is a constant fraction of the original bid. For these auctions, we develop an

expression for the symmetric bidding strategy in each type of auction. Then between

these types of auctions, we compare the revenue made for the seller. The symmetric

bidding equilibrium strategy that we found for this form of an auction can be used to

model the ongoing US-China Trade War. We are working on quantifying the variables

affecting the war. Then we can divide the war into timeslices, each with different

values for variables to model the war. This model could provide guidance towards

actions that should be taken to give the best possible result for the economies of the

countries involved. We also develop approximations for an exponential forfeit as the

bid grows larger.

2 Background on All-Pay Auctions

2.1 Generic Model for Auctions

Milgrom and Weber developed a model that can be used for any symmetric auction

which we outline below. Suppose there are n bidders all bidding for a single object. Each
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bidder will have their own information about the object, so let X = (X1, X2, . . . , Xn)

be a vector whose components are the informational variables known by each bidder.

Then let S = (S1, S2, . . . Sm) be a vector containing additional variables that affect the

opinion of bidders and may be known to the seller. We suppose there is a nonnegative

finite function u such that u(S,Xi, {Xj}j 6=i) = Vi, the value of the object to bidder i.

We let the payoff of the winner be Vi − b where b is the price paid.

Now we let f(s, x) be the joint probability distribution of the random variables

where f is symmetric in the last n variables. Furthermore, f follows the affiliation

inequality, which says that f(z∨z′)f(z∧z′) ≥ f(z)f(z′) where z∨z′ is the component-

wise maximum and z∧ z′ is the component-wise minimum. Now let Y1 = max{Xj}j 6=1.

This implies that it is more likely for the variables to be close to each other than farther

apart.

Then let fY1(·|x) be the conditional density of Y1 if X1 = x and FY1(·|x) be the

corresponding cumulative distribution. The cumulative distribution of a function f

at a point y is defined as the probability that the result is at most f(y). This can

alternatively be expressed as

FY1(y|x) =

∫ y

−∞
fY1(s|x)ds.

Lastly, we define v(x, y) = E[V1|X1 = x, Y1 = y]. This function v represents the

expected value of the object to bidder 1.

2.2 Overview of Existing Papers

The model given above has been used to study both the all-pay auction in [1] and the

first-price auction in [2]. In all-pay auctions, the payoffs are determined by [1]

Wi =


Vi − bi bi > maxj 6=ibj

−bi bi < maxj 6=ibj
Vi

#{k:bk=bi}
− bi bi = maxj 6=ibj.

(1)

Now we begin by deriving a heuristic that is necessary for the symmetric equilibrium

bidding strategy. Suppose bidders j 6= 1 follow the symmetric, increasing equilibrium

strategy α. The expected payoff of bidder 1 where X1 = x and bids b is

Π(b, x) =

∫ α−1(b)

−∞
v(x, y)fY1(y|x)dy − b. (2)

6



We want to maximize this based on the bid, so we set the derivative with respect to b

to 0 to get

v(x, α−1(b))fY1(α
−1(b)|x)

1

α′(α−1(b))
− 1 = 0. (3)

At symmetric equilibrium, bidder 1 must also follow the bidding strategy α, so α(x) = b,

which gives

α(x) = b =⇒ α′(x) = v(x, x)fY1(x|x) =⇒ α(x) =

∫ x

−∞
v(t, t)fY1(t|t)dt. (4)

However, this only gives a necessary condition for the formula of the bidding strategy.

Theorem 1. Let ψ(x, y) = v(x, y)fY1(y|x). If ψ(x, y) is increasing in x, then the

formula for symmetric equilibrium function is given by

α(x) =

∫ x

−∞
v(t, t)fY1(t|t)dt.

This theorem gives a function that represents the bidding strategy for bidders in an

all-pay auction. A proof of this can be found in [1]

Theorem 2. The function of symmetric equilibrium for a first-price auction is given

by

α(x) =

∫ x

−∞
v(s, s)

fY1(s|s)
FY1(s|s)

exp

(∫ s

x

fY1(t|t)
FY1(t|t)

dt

)
ds.

This theorem gives a function that represents the bidding strategy for bidders in a

first-price auction. A proof of this can be found in [2]

Theorem 3. If ψ(x, y) is increasing in x, then the expected revenue from an all-pay

auction is at least as great as that from a first-price auction.

These theorems show the expected results of all-pay and first-price auctions. These

results are important to sellers since it can help them determine what type of auction

they should use and how much they should expect to receive.

3 Auctions with Constant Entrance Fees

In this section, we will investigate the effects of introducing a constant entrance fee to

an all-pay auction. First, we will examine when the winner does not have his entrance

fee returned, and then we will examine when he does.
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3.1 Entrance Fee not Returned

For this case, the expected payoff is given by the following:

Wi =


Vi − bi − c bi > maxj 6=ibj

−bi − c bi < maxj 6=ibj
Vi

#{k:bk=bi}
− bi − c bi = maxj 6=ibj.

(5)

We again derive a heuristic for the bidding strategy. Suppose bidders j 6= 1 follow

symmetric increasing equilibrium strategy α. The expected payoff of bidder 1 where

X1 = x and bids b is

Π(b, x) =

∫ α−1(b)

−∞
v(x, y)fY1(y|x)dy − b− c. (6)

We want to maximize this based on the bid, so we set the derivative with respect to b

to 0 to get

v(x, α−1(b))fY1(α
−1(b)|x)

1

α′(α−1(b))
− 1 = 0. (7)

However, this equation does not depend on c at all, which means that the addition of a

constant entrance fee to an all-pay auction does not affect the strategy if the entrance

fee is paid by everyone.

3.2 Entrance Fee Returned to the Winner

Now the expected payoff is given by this:

Wi =


Vi − bi bi > maxj 6=ibj

−bi − c bi < maxj 6=ibj
Vi

#{k:bk=bi}
− bi bi = maxj 6=ibj.

(8)

Suppose bidders j 6= 1 follow symmetric increasing equilibrium strategy α. The ex-

pected payoff of bidder 1 where X1 = x and bids b is

Π(b, x) =

∫ α−1(b)

−∞
v(x, y)fY1(y|x)dy − b− c(1− FY1(α−1(b)|x)). (9)

We want to maximize this, so we set the derivative with respect to b to 0 to get

v(x, α−1(b))fY1(α
−1(b)|x)

1

α′(α−1(b))
− 1 + c · fY1(α−1(b)|x)

1

α′(α−1(b))
= 0, whichgives

(10)
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α(x) = b

=⇒ α′(x) = (v(x, x) + c)fY1(x|x)

=⇒ α(x) =

∫ x

−∞
(v(t, t) + c)fY1(t|t)dt

=⇒ α(x) =

∫ x

−∞
v(t, t)fY1(t|t)dt+ c

∫ x

−∞
fY1(t|t)dt

=⇒ α(x) =

∫ x

−∞
v(t, t)fY1(t|t)dt+ c

∫ x

−∞
fY1(t|t)dt.

(11)

This shows that when the entrance fee is returned to the winner, the bidding strategy

changes. This happens because there is no longer symmetry in the forfeits. Further-

more, when this symmetry is destroyed, the bidding amount increases when the entrance

fee increases.

4 Auctions with Fractional Forfeits

We will now analyze the effects of having the forfeit be a fraction of the bid. The

expected payoff is as follows:

Wi =


Vi − bi bi > maxj 6=ibj

−βbi bi < maxj 6=ibj
Vi

#{k:bk=bi}
− bi bi = maxj 6=ibj.

(12)

Suppose bidders j 6= 1 follow symmetric increasing equilibrium strategy α. The ex-

pected payoff of bidder 1 where X1 = x and bids b is

Π(b, x) =

∫ α−1(b)

−∞
v(x, y)fY1(y|x)dy − bFY1(α−1(b)|x)− (βb)(1− FY1(α−1(b)|x)). (13)

This is the form of the payoff since the integral represents the expected value of the

object when bidder 1 wins and the rest of the terms represent the amount bidder 1

pays, depending on whether or not he won the auction.

We want to find the b that maximizes Π, so we set the derivative with respect to b to

0 to get

v(x, α−1(b))fY1(α
−1(b)|x)

1

α′(α−1(b))
− FY1(α−1(b)|x)− bfY1(α−1(b)|x)

1

α′(α−1(b))

− β(1− FY1(α−1(b)|x)) + (βb) · fY1(α−1(b)|x)
1

α′(α−1(b))
= 0.

(14)
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We can multiply both sides of the equation by α′(α−1(b)) and rearrange terms to get

α(x) = b

=⇒ βα′(x) + (1− β)α′(x)FY1(x|x) + (1− β)α(x)fY1(x|x) = v(x, x)fY1(x|x).
(15)

This becomes a first order differential equation in α(x). Solving this equation, we get

α(x) =

∫ x

−∞
v(s, s)

dL(s, x)

1− β

where L(s, x) = exp

(
(1− β)

∫ s

x

fY1(t|t)
β + (1− β)FY1(t|t)

dt

)
.

(16)

Notice that this can also be rewritten as

α(x) =

∫ x

−∞
v(s, s)

fY1(s|s)
β + (1− β)FY1(s|s)

exp

(
−(1− β)

∫ x

s

fY1(t|t)
β + (1− β)FY1(t|t)

dt

)
ds.

(17)

Notice that when β = 0, we get the strategy for first-price auctions, and when β = 1,

we get the strategy for the original all-price auction.

Theorem 4. When α(x) is as defined above, it is a symmetric equilibrium. Let t(x) =

v(x, x). We can use integration by parts to rewrite α(x) as

α(x) =
v(x, x)−

∫ x
−∞ L(s, x)dt(x)

1− β
. (18)

Proof. Notice that L(·|x) is decreasing and v(x, x) is increasing, so by (21), α(x) is

increasing. Now suppose α(x) is continuous. We can assume α(x) is differentiable

without loss of generality by monotonically rescaling bidder estimates. We want to

show that α(x) is the optimal bid when X1 = x, which means

∂

∂b
Π(α(z);x) =

fY1(z|x)

α′(z)

(
v(x, z)− (1− β)α(z)− α′(z)

(1− β)FY1(z|x)

fY1(z|x)

)
− β. (19)

Lemma 1:
FY1

(x|z)
fY1 (x|z)

is decreasing in z.

Proof: By the affiliation inequality, for α ≤ x and z′ ≤ z,

fY1(α|z)fY1(x|z′) ≤ fY1(α|z′)fY1(x|z) =⇒ fY1(α|z)

fY1(x|z)
≤ fY1(α|z′)
fY1(x|z′)

. (20)

Now we can integrate with respect to α from −∞ to x to get

FY1(x|z)

fY1(x|z)
≤ FY1(x|z′)
fY1(x|z′)

. (21)
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Now we can apply Lemma 1 and the fact that v(x, z) is increasing to see that ∂
∂b

Π(α(z);x)

has the same sign as z − x. This means Π(α(z);x) is maximized when z = x.

Now consider when α is discontinuous at a point x. This implies that for any positive

ε, we have

∞ =

∫ x+ε

x

(1− β)fY1(s|s)
β + (1− β)FY1(s|s)

≤
∫ x+ε

x

fY1(s|s)
βFY1(s|s) + (1− β)FY1(s|s)

=

∫ x+ε

x

fY1(s|s)
FY1(s|s)

≤
∫ x+ε

x

fY1(s|x+ ε)

FY1(s|x+ ε)

= ln(FY1(x+ ε|x+ ε))− ln(FY1(x|x+ ε)).

(22)

However, for the second expression to be infinite, we need FY1(x|x+ε) = 0. This case is

just Theorem 14 in [2]. Therefore, the expression for α(x) given earlier is an equilibrium

of this auction.

Theorem 5. The expected revenue generated for the seller of an all-pay auction with

fractional cost is always less than when β = 1 if f(y|x) is increasing in x.

Proof. Let αβ(x) be the equilibrium bid for a specific value of β. Notice that the

expected payment of a bidder is

eβ(x) = (FY1(x|x) + β(1− FY1(x|x)))αβ(x)

=

∫ x

−∞
v(s, s)fY1(s|s)

β + (1− β)FY1(x|x)

β + (1− β)FY1(s|s)
exp

(
−
∫ s

x

(1− β)fY1(t|t)
β + (1− β)FY1(t|t)

dt

)
ds.

(23)

Since fY1(y|x) is increasing in x, β
fY1 (y|x)

is decreasing in x. Combined with Lemma 1,

this means
fY1 (y|x)

β+(1−β)FY1
(y|x) is increasing in x. This means that

−
∫ x

s

(1− β)fY1(t|t)
β + (1− β)FY1(t|t)

dt ≤ −
∫ x

s

(1− β)fY1(t|s)
β + (1− β)FY1(t|s)

dt

= ln(β + (1− β)FY1(s|s))− ln(β + (1− β)FY1(x|s))
≤ ln(β + (1− β)FY1(s|s))− ln(β + (1− β)FY1(x|x))

(24)

where the last inequality comes from the fact that FY1(y|x) is non-increasing in x. This
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means that

eβ(x) ≤
∫ x

−∞
v(s, s)fY1(s|s)

β + (1− β)FY1(x|x)

β + (1− β)FY1(s|s)
exp

(
ln

(
β + (1− β)FY1(s|s)
β + (1− β)FY1(x|x)

))
≤
∫ x

−∞
v(s, s)fY1(s|s) = e1(x).

(25)

This shows that the expected amount paid by a bidder in an auction where β ≤ 1 is

at most the expected price paid by a bidder in the original all-pay auction. Since this

is true about the bids of each bidder, it follows for the expected revenue earned by the

seller as well.

In this section, we have proved the equilibrium bidding strategy for the all-pay

auction with fractional forfeit. We also showed that each of these auctions does not

generate as much revenue as the all-pay auction with complete bid forfeit. However, an

ordering between two auctions with different values of β is yet to be determined.

5 Auctions with Exponential Forfeits

For this case, we will consider when the losers must pay an exponential forfeit. However,

the differential equation we receive is difficult to solve, so we will consider when the bid

is very large. The expected payoff is as follows:

Wi =


Vi − bi bi > maxj 6=ibj

−ebi bi < maxj 6=ibj
Vi

#{k:bk=bi}
− bi bi = maxj 6=ibj.

(26)

Suppose bidders j 6= 1 follow symmetric increasing equilibrium strategy α. The ex-

pected payoff of bidder 1 where X1 = x and bids b is

Π(b, x) =

∫ α−1(b)

−∞
v(x, y)fY1(y|x)dy − bFY1(α−1(b)|x)− eb(1− FY1(α−1(b)|x)). (27)

This is the form of the payoff since the integral represents the expected value of the

object when bidder 1 wins and the rest of the terms represent the amount bidder 1

pays, depending on whether or not he won the auction.
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We want to find the b that maximizes Π, so we set the derivative with respect to b to

0 to get

v(x, α−1(b))fY1(α
−1(b)|x)

1

α′(α−1(b))
− FY1(α−1(b)|x)− bfY1(α−1(b)|x)

1

α′(α−1(b))

−eb(1− FY1(α−1(b)|x)) + eb · fY1(α−1(b)|x)
1

α′(α−1(b))
= 0.

(28)

We can multiply both sides of the equation by α′(α−1(b)) and rearrange terms to get

α(x) = b

=⇒ eα(x)α′(x) + (1− eα(x))α′(x)FY1(x|x) + (α(x)− eα(x))fY1(x|x) = v(x, x)fY1(x|x)

=⇒ α′(x) =
(v(x, x) + eα(x) − α(x))fY1(x|x)

eα(x) + (1− eα(x))FY1(x|x)
.

(29)

For large b,

α′(x) ≈ fY1(x|x)

1− FY1(x|x)

α(x) ≈
∫ x

−∞
dt

(
fY1(t|t)

1− FY1(t|t)

)
.

(30)

Notice that this is independent of the function v, which represents the expected value

of the object to bidder 1. As an example, consider when there are two bidders, so X

denotes bidder 1’s signal and Y denotes bidder 2’s signal. Let f(x, y) = 4
5
(1 + xy) on

[0, 1]x[0, 1]. This gives fY1(y|x) = 2+2xy
2+x

and FY1(y|x) = 2y+xy2

2+x
. Now we have

α(x) =

∫ x

0

2 + 2t2

2− t− t3
dt =

∫ x

0

(
1

1− t
− t

2 + t+ t2

)
dt. (31)

This function behaves very similarly to − ln(1−x) since the second term in the integral

is negligible. Notice that this function increases slowly at first but then begins to

increase more and more rapidly. This shows that with an exponential forfeit, the more

likely winners bid significantly more than the less likely winners.

6 Summary and Future Work

In summary, we have investigated the effects of changing the forfeit function. We

highlighted that the addition of a constant entrance fee does not affect the bidding

strategy unless the fee is returned to the winner. When the forfeit is instead a fraction

of the bid, we showed that the revenue generated by the seller is increasing with the
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fraction. Lastly, when the forfeit is exponential, the bidding strategy quickly approaches

infinity.

In the future, we plan on analyzing the results of the all-pay auctions for more forms

of the forfeit function, such as logarithmic, polynomial, or constant functions. We also

will consider fractional forfeit where the forfeit is different for each place and the fraction

is based on a distribution of the rational numbers. Using the fractional forfeit model,

we will develop a model for the US-China trade war by dividing the war into timeslices,

each an all-pay fractional forfeit auction. Furthermore, we will investigate the difference

in results if the bidders are risk-averse rather than risk-neutral. Lastly, we will examine

the effects of multiple prizes on the results of these auctions. The multiple prize all-pay

auction has already been analyzed in [11], but we plan to extend it to other forfeits.

These forms of auctions all exist in the real world, and therefore it is important to work

towards fully understanding them.

14



7 References

[1] V. Krishna and J. Morgan, An analysis of the war of attrition and the all-pay

auction. Journal of Economic Theory 72.2 (1997): 343-362.

[2] P. Milgrom and R. Weber, A theory of auctions and competitive bidding. Economet-

rica: Journal of the Econometric Society (1982): 1089-1122.

[3] D. T. Bishop, C. Canning, and J. Maynard Smith, The war of attrition with random

rewards. J. Theoretical Biol. 74 (1978): 377-388.

[4] M. R. Baye, D. Kovenock, and C. G. de Vries, Rigging the lobbying process: An

application of the all-pay auction. Amer. Econ. Rev. 83 (1993): 289-294.

[5] R. Myerson, Optimal auction design. Math. Oper. Res. 6 (1981): 58-73.

[6] R. H. Thaler, Anomalies: The winner’s curse. Journal of Economic Perspectives 2

(1988): 191-202.

[7] E. C. Capen, R. V. Clapp, and W. M. Campbell: ”Competitive Bidding in High-

Risk Situations.” Journal of Petroleum Technology, 23 (1971): 641-653.

[8] B. O’Neill, International escalation and the dollar auction. J. Conflict Resolution

30 (1986): 33-50.

[9] R. Siegel, Asymmetric all-pay auctions with interdependent valuations. Journal of

Economic Theory 153 (2014): 684-702

[10] R. Hodler, All-pay war. Games and Economic Behavior 74 (2012): 526-540

[11] Y. Barut, The symmetric multiple prize all-pay auction with complete information.

European Journal of Political Economy 14 (1998): 627–644

[12] J. A. Amegashie, An all-pay auction with a pure-strategy equilibrium. Economics

Letters 70 (2001): 79–82

[13] Y. Che and I. Gale, Expected revenue of all-pay auctions and first-price sealed-bid

auctions with budget constraints. Economics Letters 50 (1996): 373-379

[14] C. Noussair and J. Silver, Behavior in all-pay auctions with incomplete informa-

tion. Games and Economic Behavior 55 (2006): 189–206

[15] E. Amann and W. Leininger, Asymmetric all-pay auctions with incomplete infor-

mation: The two-player case. Games and Economic Behavior 14 (1996): 1–18

15



8 Acknowledgments

I would like to thank Professor James Unwin (Oxford PhD) for proposing the project,

being a great mentor for this project, giving me new ideas and directions, teaching me

how to write a paper, and editing the paper. I would also like to thank Dr. Tanya

Khovanova (MIT) for editing my paper. I would also like to thank Dr. Slava Gerovitch

(MIT), Professor Pavel Etingof (MIT), and MIT PRIMES-USA for providing me with

this amazing opportunity. Lastly, I would like to thank my family for supporting me

through the entire journey.

16


