
Human-Friendly Autonomous Robot
Navigation by Deep Reinforcement

Learned Collision Avoidance

Student: Yu Han Daisy Wang, Independent Schools Foundation
Academy, Hong Kong

Supervising Teacher: Dr. Yee Pan Angelo Leung, Independent
Schools Foundation Academy, Hong Kong

Academic Advisor: Jia Pan, University of Hong Kong, Hong Kong

2019

Abstract

With the development of the robotics techniques in recent years, service robots
have taken more and more forefront roles, going from behind the scenes work to
direct interactions with humans in households, offices, and public areas [1], [2].
However, existing works [3], [4] often overlook the interaction with humans.
For instance, walls and humans are uniformly modelled as obstacles in the
navigation process. In this case, human social space is intruded and navigation
rules are violated. In this project, we propose a human-aware motion planning
approach based on Deep Reinforcement Learning [5] to enhance human-robot
interactions (HRI). In particular, we first differentiate humans from other objects
through human detection techniques [6]. Second, the human information and
the associated behavioral preference are integrated into the local map of the
robot’s motion planning framework. Third, the motion planning approach
leverages the local map information to generate a human-friendly trajectory
that can optimally balance the robot’s safety, efficiency, and social-consistency
during the navigation. The proposed approach will be implemented on a mobile
robot to demonstrate dexterous and human-friendly autonomous navigation in
complex scenarios with rich human activities, such as office and school. In
addition, based on our developed autonomous navigation robot, we will further
investigate the importance of human-awareness for service robots, by studying
the different responses of human crowds with various densities when interacting
with a robot taking or not taking into account the social rules. In this way, we
hope to contribute to a deep understanding of human-robot social interactions
within crowds.

Keywords: Service Robots, Human-Robot Interaction, Autonomous Navigation,
Deep Reinforcement Learning.

i

Table of Contents

Abstract i

1 Introduction 1
1.1 Background . 1
1.2 Challenges . 1
1.3 Human-Friendly Navigation 2
1.4 Organization of Report . 3

2 Related Work 4
2.1 Deep Learning-based Visual Perception 4
2.2 Traditional Approaches for Robot Navigation 5
2.3 Learning Based Approaches for Robot Navigation 6
2.4 Human-Friendly Navigation 6

3 Preliminary 8
3.1 Problem Definition . 8

3.1.1 State Space . 8
3.1.2 Action Space . 8
3.1.3 State Transition Model 8
3.1.4 Reward Function . 9
3.1.5 Observation Space . 9

3.2 Deep Reinforcement Learning 9

4 Approach 11
4.1 Visual Perception . 11
4.2 Sensor Fusion . 12
4.3 Human-Friendly Navigation 15

5 Experiments 19
5.1 Experiment Setup . 19

5.1.1 Hardware . 19
5.1.2 Software . 21

5.2 Experiment Results . 22
5.2.1 Single Human Interaction Experiment 22
5.2.2 Mutli-Human Experiments 24

6 Conclusion 29

ii

Chapter 1 Introduction

1.1 Background

With the development of the robotics techniques in recent years, service robots
have taken more and more forefront roles, going from behind the scenes work
to direct interactions with humans. These service robots have taken both virtual
and physical forms. In daily life, many virtual service robots exist in the from
of ”intelligent assistants”, such as Siri [7], which has been widely applied to
streamline various mundane tasks on people’s personal electronic devices via
voice control. In terms of robots with physical representations, although they are
commonly used in many industry environments to streamline production, most
people seldom interact with them in daily life. One of the reasons is that so many
robots cannot enter people’s daily lives is due to the fact that they lack the ability
of autonomous navigation, making them difficult to integrate into everyday life.

For the robots that interact with humans, it is imperative that they account for
human-centered designs instead of just efficiency in manufacturing, in order to
ensure optimal integration into daily life. Currently, many techniques fail to take
into to account the contexts in which they will be deployed in, leading to many
solutions that look good on paper, but fail to deliver in real life. This leads to
scenarios from hard to use user interfaces, to innocent people being misidentified
and facing arrest due to lack of representation in facial recognition training data
[8]. Scenarios like these reveal a need for more human-centered designs, designs
which allow for more harmonious human-AI interactions. Only through creating
more harmonious human-robot relationships can we start successfully integrating
AI into people’s everyday lives. As autonomous navigation becomes a more
and more important part of our daily lives, it is imperative that the solutions
being proposed are human-centered, in order to ensure that solutions are able to
integrate well into daily life.

1.2 Challenges

However, there are two main challenges for a robot to conduct human-friendly
navigation. Firstly, traditional approaches often fail to navigate a robot in crowds
as they are highly complex and dynamic. Specifically, traditional navigation
algorithms tend to treat navigation as an energy function, and approach solving
this function as an optimization problem, with a collision free path being seen
as the most optimized solution [9]. Secondly, when observing other approaches,
we can see that many solutions chose to treat all obstacles alike without human-
centered awareness. This is due to lack of visual perceptibility, which allows the
robot to differentiate between human and non-human obstacles. Even in robots

1

Introduction Chapter 1

with visual perceptibility, human-centered design is not always implemented.
Both of these reasons lead to navigation algorithms that lack human-awareness,
fail to respect basic social norms regarding navigation, and thus have a hard time
integrating into people’s daily lives.

To address these challenges, visual perceptibility should be achieved to allow
the robot to be able to distinguish between different objects. However, the robot
should not only be able to distinguish humans from other obstacles, it should
also be able to act accordingly, and act in a human-friendly way of navigation.
Hence, further processing of the information received from the sensors needs to
be conducted in order to ensure that the robot will act differently towards humans
and other non-human obstacles. Lastly, this system should be able to run in
real time in order to ensure that the robot is able to respond to changes in its
environment in order to cope with the demands of crowd navigation.

Currently, most existing approaches for motion planning, learning based or
not, tend to treat all obstacles alike. These approaches may succeed at conducting
collision-free navigation, but they fail to create human-friendly navigation as they
do not respect basic human social norms. Earlier work done with the approach
of velocity obstacles by Fiorini et al. [10] simply accounted for the velocities
of other agents in the system. Similarly, later approaches such as Optimal
Reciprocal Collision Avoidance (ORCA) also calculated the optimal approach
solely based on the measured velocities of other agents in the system as well,
failing to account for human-robot interactions [11]. Thus, we can see that there
is a dire need for motion-planning methods that are human-aware, and are able
to respect basic human social norms.

1.3 Human-Friendly Navigation

In this paper, we would like to define human-friendly as being able to observe
some human social norms with regards to movement and navigation, such as
respecting personal social space when possible. By respecting basic human social
norms, the robot is able to be better ensure comfort of humans, thus helping to
create a more positive relationship between the service robot and humans, and
creating better Human Robot Interactions (HRI).

Our contributions can be summarized as follows:

• We use of visual perception to capture social information of the
surrounding environment

• We present a sensor-fusion module to generate a laser scan with social
awareness

• We propose a deep reinforcement learning based human-aware motion
planning approach

2

Introduction Chapter 1

1.4 Organization of Report

This report is organized into six chapters. Chapter two will present a literature
review on traditional and learning based approaches for robot navigation, as
well as human friendly navigation. Chapter three covers the initial problem
formulation, as well as the deep reinforcement learning of this project. Chapter
four will discuss the approaches taken for this project, regarding visual
perception, the sensor-fusion module, and human-friendly navigation. Chapter
five covers the experiment setup, including hardware setup, and software setup,
as well as the experiment results. Finally, chapter six will conclude the report.

3

Chapter 2 Related Work

2.1 Deep Learning-based Visual Perception

To achieve human-friendly navigation, visual perception methods need to be
introduced. Recently, many advanced deep learning approaches have been widely
applied in object recognition, object detection, and semantics segmentation.

The field of deep learning, as we know it today, was due to a breakthrough
in 2006 [12]. Hinton el al. [12] demonstrated that by initializing each layer in
their neural network via unsupervised learning, then finishing with supervised
learning, they could significantly outperform traditional neutral networks,
prompting renewed interest in neural networks. This work was furthered in 2012
with AlexNet [13], a convolutional neural network for image detection. AlexNet
was groundbreaking for its accuracy in image detection, which was achieved
through use of rectified linear units (ReLU) to reduce training time, using dropout
to counter overfiting, and overlap pooling to reduce the overall size of the network
[13]. However, AlexNet is still very computationally demanding to run. In order
to counter this problem, Ross Girshick developed R-CNN [14]. R-CNN differs
from AlexNet through its use of selective search to select 2000 regions, called
region proposals, from the input photo [14]. This greatly decreases the number
of regions that has to be processed by the convolutional neural network, making
it less computationally demanding than AlexNet. This work was furthered with
Faster R-CNN [6], which eliminated the use of selective search by allowing the
network to learn how to generate region proposals. Despite Faster R-CNN’s
increase in speed over R-CNN, it is still not fast enough for running in real time.

To counter the problems posed by R-CNN and Faster R-CNN, Joseph
Redmon developed the You Only Look Once (YOLO) framework [15]. YOLO
differs from the previous approaches in how the image is inputted into the
network. Instead of analysing at the entire image, or a set number of region
proposals, YOLO does two things: First, bounding boxes are drawn on the image
to indicate regions which could potentially contain objects. Then, YOLO splits
the image into an S by S grid, and employs a single convolutional network to
detect the class probability of each bounding box. Bounding boxes with class
probabilities above the threshold are then used to predict the location of objects
in the image. Through this method, YOLO was able to massively outperform the
other competitors, achieving true realtime detection [15].

4

Related Work Chapter 2

2.2 Traditional Approaches for Robot Navigation

Regarding the problem of robot navigation and obstacle avoidance, much work
has already been undertaken. Current works can be divided into three categories:
map-based navigation, map-building navigation and map-less navigation [16].

Map-based navigation methods leverage a model of the environment provided
by humans for purposes of localization and path planning. For instance, Chatila
et al. [17] proposed a sensor-fusion approach to process the model of the
environment and provide a sequence of landmarks to be used navigation. Map-
based navigation rely on map information provided by the user, limiting these
types of methods to static scenes.

To overcome this limitation, some researchers have proposed map-building
navigation, which use sensor input to map a model of the robot’s environment for
navigation. Most of these methods are based off of the Simultaneous Localization
and Mapping (SLAM) approach. Some of the earlier works include systems such
as RHINO [18], a mobile robot which used learning techniques to map and plan
its path and react in real time to its environment. Another early example would
be RHINO’s successor, MINERVA [19], a robot designed to act as a tour guide
in the Smithsonian. This robot employed use of similar learning techniques,
mapping and planning its path in real time. Both of these approaches rely on first
creating a map of their surroundings, then utilizing this map for path planning and
navigation, and adjusting to obstacles via local obstacle avoidance algorithms.
However, these approaches require some degree of prior knowledge to describe
and rebuild the map, thus still limiting the usages.

To address this issue, other researchers have proposed map-less navigation,
which does not require prior description of the environment. Van Den Berg et
al. [4] proposed a method of reciprocal velocity obstacles (RVO) for multi-agent
navigation. This method is based on the assumption that all other agents in the
system operate on similar collision avoidance reasoning, and plans a collision free
path based on this approach. However, this assumption does not allow the method
to function well in crowds, as human crowd behaviour violates the fundamental
assumption made in the method. This work was furthered by Optimal Reciprocal
Collision Avoidance (ORCA) [11]. In this method, each robot was treated as
independent of each other, and the optimal approach was calculated based on the
measured velocities of other robots. Here, the calculation of the velocities of
other robots allowed for much more accurate calculations of collision free paths,
especially with respect to navigation in crowds. However, NH-ORCA suffers
from the freezing pedestrian problem, in which two agents that face head on
collision will simply freeze instead of taking slight detours [20], thus failing in
crowd navigation as well.

To summarize, traditional approaches, although successful at robot
navigation, do not fair well tasked at navigating crowds due to their highly
dynamic and complex nature. Traditional approaches’ reliance on hand-

5

Related Work Chapter 2

crafted parameters means they are not robust, and struggle adapting to different
scenarios. Thus, some machine learning based approaches are proposed.

2.3 Learning Based Approaches for Robot Navigation

After Lillicrap et al.[21] proposed the Deep Deterministic Policy Gradient
(DDPG) algorithm and applied it to continuous control, much work has been
undertaken in reinforcement learning (RL). Deep RL algorithms have shown
great successes in many areas, such as navigation [22], [23], exploration [24],
[25] and motion planning [26]. Bojarski et al. [27] solely used raw camera data
for simple autonomous driving in the real world, demonstrating the possibility of
deep learning in navigation. Chen et al. [28] introduced a value network of deep
reinforcement learning to model human-robot cooperative behaviors in dynamic
environments. Ziebart et al [29] proposed an inverse reinforcement learning
(IRL) based navigation algorithm, reducing the problem of crowd navigation to
a utility function, and using the principle of maximum entropy, specify an IRL
structure.

To summarize, existing learning-based methods tend to focus more on
predicting the trajectory of different agents in multi-agent environments during
the path planning process for the purposes of obstacle avoidance. However, they
tend to treat all agents in the system alike, thus failing to respect basic social
norms, resulting in great difficulty for these projects to be successfully integrated
into daily life.

2.4 Human-Friendly Navigation

Regarding the problem of human-friendly navigation, work has been done as
early as 2000. In 2000, Alami [30] presented his robot “Diligent”, which
contained a navigation planner that could account for tasks set by a human
supervisor, and act accordingly. Early work regarding human-friendly path
planning was proposed by Peter et al. [31], where inverse reinforcement learning
was used to generate human-like behaviour while navigating through crowds.
Guzzi et al. [32] presented a local sensing algorithm which proactively predicted
the paths of humans, then used that information, as well as a heuristic model, to
behave in a way which was “predictable and legible” and “acceptable” towards
humans. This would then be furthered by Pfeiffer et al. [33] in 2016, who
proposed a data-driven model that aimed to predict the actions of human agents,
as well as produce movement that would be ”predictable” for humans. Chen
et al. [26] proposed an approach towards socially-aware navigation using deep
learning. They introduced socially-aware collision avoidance in an reinforcement
learning network, where pairs of simulated agents navigate around each other to
learn a human-friendly policy, which is then generalised to a multi-agent systems.

6

Related Work Chapter 2

This allows their robot to demonstrate autonomous navigation at human walking
speed in large crowds.

Kim et al. [34] proposed an IRL-based method for the purposes of learning
human movement based on trajectories generated by an expert to learn socially
acceptable behavior. This learned policy is then used to achieve human-centered
navigation. Similar work was done in Pedestrian ORCA (PORCA) [20], where
reinforcement learning was again used to model pedestrian behaviour. PORCA
combined a pedestrian motion model and a partially observable Markov decision
process algorithm in order to create a planning system that considered both
intentions and interactions of pedestrians, despite the uncertainty in these aspects.

Through the above, we can see that in order to engage in human-friendly
navigation, learning techniques can be used in order to ensure that the robot is
able to detect humans so that path planning can fully account for humans.

7

Chapter 3 Preliminary

3.1 Problem Definition

The robot navigation problem can be typically formulated as a Partially
Observable Markov Decision Process (POMDP). A POMDP differs from a
Markov Decision Process in the fact that its states are not fully observable, thus
the decisions-making process is based on incomplete information, formulated
from a set of observations. Generally, the POMDP framework can be described
as a 5-tuple containing (S,A,T,R,O), where S is the state space; A is the action
space; T is the state transition model; R is the reward function, and O is the
observation space. Their specific definitions in the robot navigation problem are
as follow:

3.1.1 State Space

The state space S consists of a set of state vectors s which represent the decision-
making environment. In the robot navigation problem, the state vectors include
the position of objects sp, the velocity of objects sv, the acceleration of objects sa,
the intention of objects si and the shape of objects ss. Since the sensors of robots
only perceived limited information with noise, these state vectors usually cannot
be fully measured, and must be deduced from observations in the observation
space. Hence, the state space can be written as a 5-tuple consisting of all of the
existing state vectors, as shown in Eqn. 3.1

(st
p,s

t
v,s

t
a,s

t
i,s

t
s) ∈ st (3.1)

3.1.2 Action Space

A set of actions of the agent represent the action space A. In terms of the robot
navigation problem, the feasible action space is related to the locomotion of the
mobile platform. In this project, differential two wheeled drive is implemented.
Thus, we can only control the linear velocity of the robot alinear and the angular
velocity aangular. Hence, the action space can be written as a 2-tuple consisting
of the linear velocity and the angular velocity, as shown in Eqn. 3.2

(at
linear,a

t
angular) ∈ at (3.2)

3.1.3 State Transition Model

The state transition model T represents the probabilities of transitioning between
different states. The agent takes an action at in the state st at time step t, which

8

Problem Formulation Chapter 3

causes the environment to transition to the new state st+1 with probabilities
T (st+1|st ,at). For example, the movement of the robot at every step may
randomly affect the pedestrian behavior in the environment.

3.1.4 Reward Function

To measure the agent’s performance, the reward function R is introduced. After
the transition to a new state is finished, the agent will receive a reward. The
reward is generated by the reward function R which depends on the new state,
the last action taken and the last state the robot was in (i.e. R(st+1,at ,st)).
The objective of the agent is to maximize the reward. Therefore, the design
of the reward function significantly impacts the behavior that the robot finally
learns. The goal of this project is to make it so that the robot can reach the final
destination as quickly as possible while still avoiding collisions. The robot is
punished for collisions with other obstacles, and rewarded for reaching its goal.
Referring to [35], the reward function is designed as follow:

rt = R(st+1,at ,st) =


20 if ‖st

p− st
i‖< 0.1

−20 else if collision
2.5 · (‖st−1

p − si‖−‖st
p− si‖) otherwise.

(3.3)

3.1.5 Observation Space

The observation space O is composed of a set of observation vectors o. The
scope of this observation space depends on the sensors of the agent. In this
project, the robot is equipped with the following sensors: a 2D LiDAR, a
color camera, a depth camera, and an inertial measurement unit (IMU). Hence,
the observation vectors can be written as as olidar, ocolor, odepth and oIMU
respectively. Based of the these observations, the robot can infer the goal position
ogoal . Since these sensors cannot perceive perfectly, the observation model Ω is
introduced to account for the observation uncertainty Ω(ot+1|st+1,at). Hence,
the mathematical respresentation of the observation space can be seen in Eqn.
3.4.

(ot
lidar,o

t
color,o

t
depth,o

t
imu,o

t
goal) ∈ ot (3.4)

3.2 Deep Reinforcement Learning

With the rapid development of the Artificial Intelligence (AI), many POMDP
problems have been solved by Deep Reinforcement Learning approaches [5],
[36]. The optimal policy π∗ can be defined according to the Bellman equation:

π
∗ = argmax

a∗
R(s(t +1),at ,st)+ γ

∫
st+1

T (st+1|st ,at)V ∗(st+1)dst+1 (3.5)

9

Problem Formulation Chapter 3

where γ ∈ [0,1] is the discount factor; V (s) is the State-Value function, defined
as the expected reward.

The optimal policy is a sum of the maximum of the reward function, and the
discount factor multiplied by the the sum of, at time point t+1, the state transition
model, multiplied by the State-Value function.

V (st) = E[
∞

∑
t ′=t

γ
t ′−trt] (3.6)

The State-Value model at time step t can be rewritten as the sum to infinity of
the discount factor at time step t ′− t minus the reward factor at time step t.

Based on these definitions, many RL algorithms can find the optimal policy
via interaction with the environment. In next chapter, we present the training
details for the robot navigation problem.

10

Chapter 4 Approach

In this chapter, we first introduce the visual perception method we
implemented on our robot, which is used to capture the social information in the
surrounding environment. Then, to integrate all of the relevant sensor information
into the navigation module, we propose a sensor fusion module. Finally, we
present the decision-making network used to achieve human-friendly navigation.

4.1 Visual Perception

To realize real-time object detection with limited computational resources,
YOLO [15] is employed as our visual perception module. Compared to Faster
R-CNN [6], YOLO has faster inference time, but comparable detection accuracy
[15]. Due to our limited computational resources, faster inference time is crucial
towards being able to detect humans in real-time.

The YOLO family of object detectors are able to achieve faster inference time
due to their architecture. Unlike other methods, which conduct object recognition
in multiple steps, YOLO treats object recognition as a single regression problem.
YOLO splits the inputted image into an S×S grid, where each grid cell predicts
only one object [15]. The cell responsible for predicting an object is the cell
which contains the center of the object. Each grid cell predicts B bounding boxes,
each which contain a box confidence score, as well as C class probabilities,
one per class. The box confidence score reflects how likely the bounding box
actually contains an object, while the class probability represents how likely an
object belongs to a certain class. YOLOv3, the version used in this paper, uses
Darknet-53, a 53 layer convolutional network, as its backbone feature extractor
[37]. Additional convolutional layers are added to the network in order to
make predictions at three scales, increasing YOLOv3’s ability to predict objects
at images of different scale. The last layer predicts the bounding boxes, box
confidence score, as well as the class probabilities [37]. An example of the output
from YOLOv3 can be seen in Fig. 4-1.

To further improve the inference time, the NVIDIA TensorRT platform is
introduced [38]. The TensorRT first optimizes the trained network model by
merging the repeated operations in it. Then, TensorRT can reduce the inference
precision of the network (e.g. half precision floating format FP16) to achieve
lower latency without losing too much accuracy. Finally, the optimized inference
module is built to capture the social information in the environment.

11

Approach Chapter 4

Figure 4-1: A demonstration of the output from the YOLOv3 object detector.

4.2 Sensor Fusion

To generate a laser scan with social-awareness, a sensor fusion module is
proposed to integrate visual information into the raw sensor data of the 2D
LiDAR. This is because there are two limitations for the raw data. Firstly, the
2D point cloud information on simplifies the description of the obstacles in the
environment, making it that the robot cannot fully realize the collision detection,
as it exists in the three-dimensional space. Secondly, this point cloud data only
contains the geometric information of the environment and ignores the semantic
information, which we have already established plays a crucial role in human-
friendly navigation. Therefore, we introduce a sensor-fusion module to solve
these problems. The structure of the sensor fusion module can be divided into
two parts:

First, the scan returned by the 2D laser scanner is fused together with the
point cloud information returned by the depth camera, in order to detect obstacles
that the 2D LiDAR may not have detected. Points from the y axis of the point
cloud are filtered in order to detect obstacles that are lower than the robot, but
may not have been detected by the LiDAR. We then label the corresponding
location of these obstacles on the 2D LiDAR scan. Hence, the collision scan can
be represented as the output of the depth fusion function, with inputs as the 2D
LiDAR and the depth information, as seen in Eqn. 4.1.

ot
collison = Fdepth(ot

lidar,o
t
depth) (4.1)

12

Approach Chapter 4

raw laser points

depth fusion points

point cloud

Figure 4-2: A demonstration of the output from the depth fusion. Points in black
represent the raw 2D LiDAR data, while the points in red represent the poitns added
to the LiDAR data after the depth fusion.

Second, as the bounding boxes of objects are drawn by the visual perception
module, the coordinates of the humans in the image can be found. By calibration
of the image coordinates and LiDAR coordinates, we can label the points in the
laser scan which belonging to the humans. We propose that robots should not
only avoid collision with humans, but also should not intrude the social space
of humans. Therefore, to keep a certain social distance from human, we need
to integrate the social information into the raw sensor data to generate a human-
aware laser scan which represents the social feasible space. The social feasible
space can be represented as the output of the social function, with inputs of the
collisions scan and the RGB information.

ot
social = Fsocial(ot

collision,o
t
rgb) (4.2)

The social feasible space computation can be divided into four steps. Because
the point cloud coordinates on the 2D plane are based on a robot-centered polar
coordinate system, we first transform the points on the polar coordinate system
to the Cartesian coordinate system. Then, we connect these points into a polygon
and offset the line segments which are labeled as human by the predetermined
social distance. Thus, we can obtain the polygon of the social feasible space.
Lastly, we construct rays from the robot with different angles, and compute the
intersection of the smallest distance for the polygon. Through this, we obtain the
human-aware laser scan, as seen in Fig. 4-4.

13

Approach Chapter 4

Laser Scan

Robot

Human

(a) Step 1: Setup of the environment

Social Info

(b) Step 2: Preliminary mapping

Social Distance

(c) Step 3: Social distance drawn

Social Feasible Space

(d) Map modified

Figure 4-3: A diagram explaining the procedures taken in the sensor-fusion module. In
step 1, a setup of the environment is depicted. In step 2, prelimary mapping is undertaken
using the 2D LiDAR sensor. In step 3, the social distance is calculated by offsetting the
line segments representing the edges of the human. In step 4, the sensor-fusion module
modifies the map generated in step 2 according to the boundaries draw in step 3.

14

Approach Chapter 4

social-aware scan

Figure 4-4: An example of the output of the sensor-fusion module. Note the blue line,
demonstrating the offset edges belonging to the human in frame.

Finally, the human-aware laser scan is then fed into the navigation algorithm,
thus allowing the navigation algorithm to achieve human-friendly navigation.

4.3 Human-Friendly Navigation

To achieve harmonious HRI, the robot should have the ability to adapt to the
highly dynamic movement of humans. Thus, we introduce the navigational
network trained by reinforcement learning.

Referring to previous related work [35], we build a end-to-end reinforcement
learning network with the 2D LiDAR scan as input. The network deploys a 1D
convolutional neural network to extract the information of laser scan, and the
output of the network is the linear velocity and angular velocity, as defined in
Chapter 3. The training environment is based on the multi-agent simulator Stage
[39].

Differing from [35], which used multiple training scenarios to learn a
collision avoidance policy for multi-robot systems, we introduce a crowd
simulator to simulate the pedestrian behavior in our simulation [11], [40], in
order to ensure the robot can learn how to interact with humans instead of other
robots. The training scenario includes 50 robots and 50 people, and randomly
generating their start points and goals in a 25m × 25m free space. Since it is
computationally expensive to generate a human-aware scan in simulations, the
raw laser scan is used to train the network how to navigate in the local feasible
space. In the real world testing, we feed the social feasible space into the network
to conduct human-aware navigation.

15

Approach Chapter 4

CNN

Action

Scan

256

128

Figure 4-5: The navigation network architecture. A five hidden layers CNN module is
proposed to extract the feature in the laser scan ot

social effectively. Then, the other relative
information ot

imu and ot
goal is combined with the feature of the scan. Finally, the action is

computed.

Robots

Human

Figure 4-6: A demonstration of the simulation environment.

16

Approach Chapter 4

For the training algorithm, we implement the state-of-the-art RL algorithm
Soft Actor-Critic (SAC) [41] in order to accelerate the training process. The
training pseudo code is shown in Algorithm 1. The whole training process costs
about 1.5 hours for 300 episodes, and the cumulative reward curve is shown in
Fig. 4-7.

Algorithm 1 Soft Actor-Critic for navigation in crowds

1: Initialize policy network πθt , Q-value function Qφt (ot ,at) and replay buffer
B; set up a multi-robot simulator E.

2: for iteration = 1,2, ..., do
3: // Collect data
4: for timestep t = 1 to T do
5: for robot i = 1 to N do
6: // Get an action by πθ

7: at
i = πθt (ot

i)
8: // Execute action in the environment
9: (rt

i ,o
t+1
i)← E.step(at

i)
10: // Add data to the replay buffer
11: B.add(ot

i,a
t
i,r

t
i ,o

t+1
i)

12: end for
13: end for
14: // Update network
15: if B.size()> B then
16: // Sample a branch of the training data item
17: τ ← B.sample()
18: // Apply SAC learning rule to compute the loss [41]
19: lt = ComputeLoss(τ;θt ,φt)
20: // Update network parameters by the Adams optimizer [42]
21: θt+1,φt+1 = UpdateParameters(lt ;θt ,φt)
22: end if
23: end for

Eventually, based off the simulation, the navigation network learns the
optimal policy. In order to enable the robot to navigate with human-awareness,
the social scan, extracted by the visual perception module and the sensor-fusion
module is applied in the real world experiments.

17

Approach Chapter 4

0 50 100 150 200 250 300
Episode

10

5

0

5

10

15

20

25

30

35
Re

w
ar

d

Reward

Figure 4-7: Cumulative reward curve of the training process.

18

Chapter 5 Experiments

In this chapter, we first demonstrate the experiment setup, including the
robot hardware, software and the experiment scenarios. Finally, we present the
experiment results.

5.1 Experiment Setup

5.1.1 Hardware

For this project, two separate mini computers (Intel Celeron Processor J1900 [43]
and Jetson TX1 Module [44]) are used to implement our algorithm. In terms of
the sensors, as we stated in Chapter 3.1.5, a 2D LiDAR, a color camera with a
wide angle lens, a depth camera [45] and the IMU module is used. All of these
are mounted on the mobile platform Spark-T [46]. A diagram of the hardware
used can be seen in Fig. 5-1.

To achieve faster runtime of the program, two different computers are used
to account for different computation. The main computer has a Intel Celeron
Processor J1900 CPU with four cores x86-64 architecture[43], and accounts
for the algorithms that can not be parallel computed (e.g. the sensor-fusion
algorithm). The Jetson TX1 Module has a 256 CUDA cores based on ARM
architecture [44], and accounts for the programs that support CUDA parallel
acceleration (e.g. the computer vision module). Images are first processed with
YOLO in the GPU board, allowing for much faster processing of images. Once
human labelling is completed in the Jetson TX1, the processed information is then
sent to the main computer via Transmission Control Protocol (TCP) and User
Datagram Protocol (UDP). The main computer uses the sensor-fusion module
as described in Section 4.2 to create a human-aware laser scan. This is used
by the navigation network as described in Section 4.3 to conduct navigation,
and instructs the wheels to move accordingly. The usage of two different
computers, one CPU heavy and another GPU heavy, allows for faster runtime
of the programs, thus enabling the robot react to its surroundings in real time.

As for sensors, a 2D LiDAR, a color camera with a wide angle lens, and a
depth camera have been chosen. The laser scanner is mounted at the bottom of
the robot, and returns a basic map of all sides of the robot. The depth camera is
mounted at the middle of the robot, and returns a depth information of the region
in front of the robot. This depth information is processed through the sensor-
fusion module, and is used to identity obstacles that the 2D LiDAR may have
missed. Object detection for obstacles in front of the robot is conducted through
inclusion of the RGB information from the wide angle camera. A wide angle lens
has been used in order to allow the robot to continue to detect people while it is

19

Experiments Chapter 5

Depth camera
Returns depth
information

Intel Celeron J1900
CPU board
Sensor Fusion
Navigation

Jetson TX1 Module
GPU board
YOLO

LiDAR
Returns 2D laser
scan

IMU
Used for odometry

Wide angle camera
Returns RGB
information

Figure 5-1: A diagram of the hardware used in this project. The 2D LiDAR is situated
on the the mobile platform at the bottom of the robot. While mounted at the middle is
the depth camera, and mounted at the top is the color camera with a wide angle lens. The
mobile platform has two wheels located at its base. This allows for the robot to move
forwards and backwards, as well as turn.

20

Experiments Chapter 5

passing them. This allows the robot to perform the correct action based on the
obstacles ahead of it, ensuring harmonious HRI.

5.1.2 Software

The project was created on Robotic Operating System (ROS). ROS acts as a
middleware between robotic software and robotic hardware [47]. It provides
services very similar to operating systems, such as hardware abstraction, low-
level device control, implementation of commonly-used functionality, message-
passing between processes, and package management [47]. ROS lets different
hardware components communicate with each other, allowing one to create
multi-machine programs. Sensor driven programs benefit massively from ROS,
as its function as a middleware allows for ease of communication between
different components. As The inclusion of the node structure allows ROS
programs to be extremely modular and scalable. This project is sensor driven
due to the need of the robot to be able respond to its environment in realtime,
hence the usage of ROS in order to easily create a multi-machine program.

ROS was used to achieve a multi-machine system as it greatly increases the
runtime of the program and makes the program more flexible. Usage of ROS
image processing tasks to be allocated to the GPU, while delegating other tasks
to the CPU by establishing a connection between the two computers. Based on
ROS, the software framework consists of three main levels: the sensor level,
computational level, and actuator level. A diagram of the overall framework can
be seen in Fig. 5-2.

The sensor level is composed of four different components: a 2D LiDAR, a
color camera with a wide angle lens, a depth camera, and an IMU. The LiDAR
returns a laser scan, the color camera returns RGB, the depth camera returns a
point cloud with depth information, and the IMU returns the velocity and angles
of the mobile platform. All of these sensor messages are subscribed by the CPU,
which is located in the computation level.

The computational level is composed of two computers: the Intel Celeron
J1900 CPU board and the Jetson TX1 GPU board. Both of these computers
are installed with the Ubuntu system. The CPU subscribes to all of the
sensor messages, then publishes the RGB image, which is subscribed by the
GPU. The GPU conducts object detection on the image through the YOLO
object recognition system. After that, the x-coordinates of the bounding boxes
containing humans are extracted and published. This is subscribed by the CPU,
which contains the sensor-fusion module and the navigation module. The sensor-
fusion module fuses together data from the depth camera and the color camera
with a wide angle lens to label obstacles missed by the 2D LiDAR, as well the
location of humans in frame. The points containing humans are offset, making the
robot perceive the humans as larger obstacles. This modified socially-aware scan
is then published and subscribed by the navigation module, and is then inputted
into the navigation network as described in section 4.3. Through usage of the

21

Experiments Chapter 5

Actuator Level

Computational Level

2D LiDAR

Cameras

Jetson TX1 GPU
Board (YOLO)

Spark-T Mobile
Platform

Intel Celeron
J1900 CPU Board
(Sensor Fusion,
Navigation)

Senor Level

Odometry

RGB, Depth

Images X-coordinates
of humans
In frame

Planned path

Scan

IMU

Figure 5-2: A diagram depicting the framework of the software for this project. The
software contains three layers: the sensor layer, the computational layer, and the actuator
layer.

Question Answer
Do you think this robot disturbed you? (1 - 5, 1 = not at all, 5 = a lot)
Do you think the distance between the robot and you is appropriate?
(1 - 5, 1 = too close, 5 = acceptable)
Please estimate the closest distance between you and the robot.
(10 CM, 20 CM, 30 CM, 40 CM, 50 CM)
Please give a final score to the navigation algorithm
(considering time and speed in which the robot
reached its goal, and whether or not it disturbed you in this process)
(1 - 5, 1 = bad, 5 = good)

Table 5-1: User Survey for the Multi-Human Testing

pre-trained navigation network and the human-aware laser scan, the robot is able
to conduct human-friendly navigation. The results of the navigation module are
then sent to the mobile platform, which is located in the actuator level.

In the actuator level, the mobile platform receives commands from the
navigation module and executes the commands, navigating in a human-friendly
way.

5.2 Experiment Results

5.2.1 Single Human Interaction Experiment

5.2.1.1 Setup

For the single human tests, the experiment setup had either a human obstacle
or a non-human obstacle stand in the path of the robot, while the robot tried to
navigate to a goal behind them.

22

Experiments Chapter 5

Human testers

Robot

Goal

Corridor wall

(a) Scenario 1 (b) Scenario 2

Figure 5-3: Diagrams depicting the setup of the two testing scenarios.

(a) Demonstration of the social distance of
human obstacles and the robot.

(b) Demonstration of the social distance of
non-human obstacles.

Figure 5-4: Images from the single human testing. The robot displays a much greater
social distance when faced with a human obstacle, compared to a non-human obstacle.

23

Experiments Chapter 5

5.2.1.2 Results

In this scenario, the robot demonstrated an marked increase in social distance
when avoiding humans, versus avoiding non-human obstacles, as shown in Fig.
5-4. As conditions were kept the same in both experiments, this demonstrates
that our robot is reacting to its surroundings in real-time, and is able to respect
the social distance of humans while navigating in single human scenarios. The
baseline algorithm, not being able to discern whether not an obstacle was
human or not, simply concerns itself with finding the shortest path, which is
to stick as close as possible to the human. However, our method, being able
to recognise humans and account for their social distance, and bypasses the
human. The marked increase in the avoidance distance indicates the success of
the human-friendly navigation method in conducting human-friendly navigation
with regards to single human scenarios.

5.2.2 Mutli-Human Experiments

5.2.2.1 Setup

For multi-human tests, all testing took place in a corridor. All human volunteers
were divided into group of two persons, each group was asked to stand in the
robot’s path in two different scenarios, while the robot would navigate to its
goal and avoid collision with human and other obstacles. A diagram of the
two scenarios used for multi-human testing can be seen in Fig. 5-3. Each
volunteer tested the same scenario twice, one with our human-friendly navigation
algorithm, another with a baseline, non human-friendly navigation algorithm.
The volunteers were not told which algorithm was being tested. After testing,
the volunteers were asked to compare the two by filling out a survey. The survey
questions given to the multi-human testing participants can be seen in Tab 5-1.

5.2.2.2 Results

In scenario 1, the baseline navigation algorithm had a tendency to try and
squeeze between the participants, while our algorithm was able to respect the
social distance, and bypass the participants, as shown in Fig. 5-5. In all
trials, the environment was kept the same, and only the algorithm used changed,
demonstrating that the baseline algorithm was not human-friendly, while our
approach was. This is because the baseline method does not account for humans
and instead treats all obstacles as equal, thus it only accounted for the shortest
path, leading it to only determine whether not the distance between the two
people would be great enough for it to pass, which it determined it was. In
contrast, our method account for the social-distance of the humans in the tests,
and thus determined that there was not enough space to pass through the two
test subjects, and bypassed them. The affects of this can be seen in the testing
results (as shown in Tab.5-2). There was a statistically significant (p < 0.05)

24

Experiments Chapter 5

(a) An example of the path taken by the baseline method in scenario 1.

(b) An example of the path taken by our method in scenario 1.

Figure 5-5: A comparison of paths taken by the baseline method and our method in
scenario 1.

25

Experiments Chapter 5

(a) An example of the path taken by the baseline method in scenario 2.

(b) An example of the path taken by our method in scenario 2.

Figure 5-6: A comparison of paths taken by the baseline method and our method in
scenario 2.

26

Experiments Chapter 5

decrease in the disturbance level with the baseline navigation algorithm and our
human-friendly navigation algorithm, indicating that our method is indeed a more
human-friendly approach. This is again reflected in the higher mean and median
performance score for our approach, which helps to further reconfirm this point.
Perceived distance had a greater mean and median for our approach, indicating
that users were able to discern a visible different between the two approaches.

In scenario 2, the baseline method caused the robot to come very close to
the participants, but our method was able to respect and maintain the social
distance. This is again because the baseline method does not account for a
human’s social-distance, hence the baseline method simply takes the shortest
route possible, which requires the robot to come as close as possible to the
participants. With our human-friendly approach, the robot is able to differentiate
the humans in frame, and thus take a much more human-friendly approach by
avoiding the humans. However, due to the setup of the testing, this effect was
less prominent than scenario 1. As shown in Fig. 5-6, the robot with our
method rapidly swerves right after passing the front participant, as it fails to
sense the front participant anymore. Instead, it swerves to the right in order
to keep social distance with the back participant. Hence, the front participant
gave more negative feedback, while the back participant gave more positive
feedback. This is reflected in the statistical difference (as shown in Tab.5-2),
which is less significant (p> 0.05) but still visible. This is shown in the decreased
mean and median disturbance level, coupled with the increased mean and median
performance score. This further supports that our method is more human-friendly
that standard navigation methods. Perceived distance again had a greater mean
and median for our approach, indicating that users were still able to discern a
visible different between the two approaches.

In summary, our results demonstrate that our method is able to successfully
navigate autonomously in both single human scenarios and multi-human
scenarios, and is rated more human-friendly in both scenarios. The success of
our method in multiple tests and multiple scenarios suggests that our method is
able to cope with a wide variety of real world scenarios, and is not just limited to
the ones presented here.

27

Experiments Chapter 5

Table 5-2: Descriptive Statistics of Multi-Human Testing Results

Scenario 1
Baseline Human-friendly navigation p-value
M SD Mdn M SD Mdn

Disturbance level (H1) 6.08 2.25 7 2.42 1.85 2 0.0020
Performance score (H2) 3.08 1.38 3.5 4 1.08 4 0.1059
Perceived distance (cm) 20.83 13.20 15 32.5 11.64 30 0.0306

Scenario 2
Baseline Human-friendly navigation p-value

Disturbance level (H1) 5.09 2.64 5 3.82 2.21 3 0.2975
Performance score (H2) 3.36 1.37 4 3.54 1.07 3 0.8123
Perceived distance (cm) 19.10 10.83 10 23.55 9.9 20 0.2307

28

Chapter 6 Conclusion

To conclude, this paper presents a human-friendly autonomous robot that
conducts navigation based on deep reinforcement learned collision avoidance.
In order to achieve this task, object detection was performed on camera imagery
to detect humans, which was then used to label the corresponding coordinates of
the humans in the 2D LiDAR scan. Depth information was also used to further
account for any obstacles that the 2D LiDAR may have missed. This processed
scan was then fed into the navigation algorithm, allowing for the algorithm to
distinguish between human and non-human obstacles, respecting the human’s
social distance. The method was tested on a variety of scenarios multiple times,
including single human and multi-human scenarios. In single human tests, the
robot demonstrated a marked difference in its approach towards avoiding humans
and non-human obstacles. In multi-human scenarios, robot again demonstrated a
discernible difference in its approach towards humans and non-human obstacles.
The user surveys further reconfirm that our approach is more human-friendly than
traditional navigation methods, as demonstrated by lower reported disturbance
levels and higher performance scores for our method.

29

References

[1] H. Bai, S. Cai, N. Ye, D. Hsu, and W. S. Lee, “Intention-aware online
pomdp planning for autonomous driving in a crowd,” in 2015 ieee
international conference on robotics and automation (icra), IEEE, 2015,
pp. 454–460.

[2] J. Wirtz, P. G. Patterson, W. H. Kunz, T. Gruber, V. N. Lu, S. Paluch, and
A. Martins, “Brave new world: Service robots in the frontline,” Journal of
Service Management, vol. 29, no. 5, pp. 907–931, 2018.

[3] D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach to
collision avoidance,” IEEE Robotics & Automation Magazine, vol. 4, no. 1,
pp. 23–33, 1997.

[4] J. Van den Berg, M. Lin, and D. Manocha, “Reciprocal velocity obstacles
for real-time multi-agent navigation,” in 2008 IEEE International
Conference on Robotics and Automation, IEEE, 2008, pp. 1928–1935.

[5] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et
al., “Human-level control through deep reinforcement learning,” Nature,
vol. 518, no. 7540, p. 529, 2015.

[6] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” in Advances in neural
information processing systems, 2015, pp. 91–99.

[7] A. Inc., Apple launches iphone 4s, ios 5 & icloud. [Online]. Available:
https : / / www . apple . com / ie / newsroom / 2011 / 10 / 04Apple -

Launches-iPhone-4S-iOS-5-iCloud/.

[8] N. Chokshi, “Facial recognition’s many controversies, from stadium
surveillance to racist software,” The New York Times, May 19, 2019.
[Online]. Available: https : / / www . nytimes . com / 2019 / 05 / 15 /

business / facial - recognition - software - controversy . html

(visited on 09/01/2019).

[9] O. K. Bruno Siciliano, Springer Handbook of Robotics. Springer, 2008.

[10] P. Fiorini and Z. Shiller, “Motion planning in dynamic environments
using velocity obstacles,” The International Journal of Robotics Research,
vol. 17, no. 7, pp. 760–772, 1998.

[11] J. Van Den Berg, S. J. Guy, M. Lin, and D. Manocha, “Reciprocal n-body
collision avoidance,” in Robotics research, Springer, 2011, pp. 3–19.

[12] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for
deep belief nets,” Neural computation, vol. 18, no. 7, pp. 1527–1554, 2006.

R-1

https://www.apple.com/ie/newsroom/2011/10/04Apple-Launches-iPhone-4S-iOS-5-iCloud/
https://www.apple.com/ie/newsroom/2011/10/04Apple-Launches-iPhone-4S-iOS-5-iCloud/
https://www.nytimes.com/2019/05/15/business/facial-recognition-software-controversy.html
https://www.nytimes.com/2019/05/15/business/facial-recognition-software-controversy.html

References

[13] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural
information processing systems, 2012, pp. 1097–1105.

[14] R. B. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature
hierarchies for accurate object detection and semantic segmentation,”
CoRR, vol. abs/1311.2524, 2013. arXiv: 1311.2524. [Online]. Available:
http://arxiv.org/abs/1311.2524.

[15] J. Redmon, S. K. Divvala, R. B. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” CoRR, vol. abs/1506.02640,
2015. arXiv: 1506.02640. [Online]. Available: http://arxiv.org/
abs/1506.02640.

[16] G. N. DeSouza and A. C. Kak, “Vision for mobile robot navigation: A
survey,” IEEE transactions on pattern analysis and machine intelligence,
vol. 24, no. 2, pp. 237–267, 2002.

[17] R. Chatila and J.-P. Laumond, “Position referencing and consistent world
modeling for mobile robots,” in Proceedings. 1985 IEEE International
Conference on Robotics and Automation, IEEE, vol. 2, 1985, pp. 138–145.

[18] S. T. A. W. DieterFox and T. D. T. M. TimoSchmidt, “Map learning and
high-speed navigation in rhino,” 1998.

[19] S. Thrun, M. Bennewitz, W. Burgard, A. Cremers, F. Dellaert, D.
Fox, D. Hahnel, C. Rosenberg, N. Roy, J. Schulte, and D. Schulz,
“Minerva: A second-generation museum tour-guide robot,” vol. 3, Feb.
1999, 1999–2005 vol.3, ISBN: 0-7803-5180-0. DOI: 10.1109/ROBOT.
1999.770401.

[20] Y. Luo, P. Cai, A. Bera, D. Hsu, W. S. Lee, and D. Manocha, “Porca:
Modeling and planning for autonomous driving among many pedestrians,”
IEEE Robotics and Automation Letters, vol. 3, no. 4, pp. 3418–3425, 2018.

[21] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,
and D. Wierstra, “Continuous control with deep reinforcement learning,”
arXiv preprint arXiv:1509.02971, 2015.

[22] Y. Zhu, R. Mottaghi, E. Kolve, J. J. Lim, A. Gupta, L. Fei-Fei, and A.
Farhadi, “Target-driven visual navigation in indoor scenes using deep
reinforcement learning,” in ICRA, 2017, pp. 3357–3364.

[23] G. Kahn, A. Villaflor, B. Ding, P. Abbeel, and S. Levine, “Self-supervised
deep reinforcement learning with generalized computation graphs for
robot navigation,” in 2018 IEEE International Conference on Robotics and
Automation (ICRA), IEEE, 2018, pp. 1–8.

[24] S. Thrun and Y. Liu, “Multi-robot slam with sparse extended information
filers,” in Robotics Research. The Eleventh International Symposium,
Springer, 2005, pp. 254–266.

R-2

http://arxiv.org/abs/1311.2524
http://arxiv.org/abs/1311.2524
http://arxiv.org/abs/1506.02640
http://arxiv.org/abs/1506.02640
http://arxiv.org/abs/1506.02640
https://doi.org/10.1109/ROBOT.1999.770401
https://doi.org/10.1109/ROBOT.1999.770401

References

[25] S. Thrun, W. Burgard, and D. Fox, “A real-time algorithm for mobile
robot mapping with applications to multi-robot and 3d mapping,” in ICRA,
vol. 1, 2000, pp. 321–328.

[26] Y. F. Chen, M. Everett, M. Liu, and J. P. How, “Socially aware
motion planning with deep reinforcement learning,” in 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), IEEE,
2017, pp. 1343–1350.

[27] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal,
L. D. Jackel, M. Monfort, U. Muller, J. Zhang, et al., “End to end learning
for self-driving cars,” arXiv preprint arXiv:1604.07316, 2016.

[28] Y. F. Chen, M. Liu, M. Everett, and J. P. How, “Decentralized non-
communicating multiagent collision avoidance with deep reinforcement
learning,” in ICRA, 2017, pp. 285–292.

[29] B. D. Ziebart, A. Maas, J. A. Bagnell, and A. K. Dey, “Maximum entropy
inverse reinforcement learning,” in Proc. AAAI, 2008, pp. 1433–1438.

[30] R. Alami, I. Belousov, S. Fleury, M. Herrb, F. Ingrand, J. Minguez, and
B. Morisset, “Diligent: Towards a human-friendly navigation system,”
in Proceedings. 2000 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS 2000) (Cat. No.00CH37113), vol. 1, Oct. 2000,
21–26 vol.1. DOI: 10.1109/IROS.2000.894576.

[31] P. Henry, C. Vollmer, B. Ferris, and D. Fox, Learning to navigate through
crowded environments, May 2010. DOI: 10.1109/ROBOT.2010.5509772.

[32] J. Guzzi, A. Giusti, L. M. Gambardella, G. Theraulaz, and G. A. Di Caro,
“Human-friendly robot navigation in dynamic environments,” in 2013
IEEE International Conference on Robotics and Automation, IEEE, 2013,
pp. 423–430.

[33] M. Pfeiffer, U. Schwesinger, H. Sommer, E. Galceran, and R. Siegwart,
“Predicting actions to act predictably: Cooperative partial motion planning
with maximum entropy models,” in 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Oct. 2016,
pp. 2096–2101. DOI: 10.1109/IROS.2016.7759329.

[34] B. Kim and J. Pineau, “Socially adaptive path planning in human
environments using inverse reinforcement learning,” International Journal
of Social Robotics, vol. 8, no. 1, pp. 51–66, 2016.

[35] T. Fan, X. Cheng, J. Pan, D. Monacha, and R. Yang, “Crowdmove:
Autonomous mapless navigation in crowded scenarios,” arXiv preprint
arXiv:1807.07870, 2018.

[36] OpenAI, Openai five, https://blog.openai.com/openai- five/,
2018.

R-3

https://doi.org/10.1109/IROS.2000.894576
https://doi.org/10.1109/ROBOT.2010.5509772
https://doi.org/10.1109/IROS.2016.7759329
https://blog.openai.com/openai-five/

References

[37] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,” arXiv
preprint arXiv:1804.02767, 2018.

[38] NVIDIA, Nvidia tensorrt: A programmable inference accelerator.
[Online]. Available: https://developer.nvidia.com/tensorrt.

[39] R. Vaughan, “Massively multi-robot simulation in stage,” Swarm
intelligence, vol. 2, no. 2-4, pp. 189–208, 2008.

[40] S. Curtis, A. Best, and D. Manocha, “Menge: A modular framework for
simulating crowd movement,” Collective Dynamics, vol. 1, pp. 1–40, 2016.

[41] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” arXiv preprint arXiv:1801.01290, 2018.

[42] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[43] Intel, Intel® celeron® processor j1900. [Online]. Available: https://
ark.intel.com/content/www/us/en/ark/products/78867/intel-

celeron-processor-j1900-2m-cache-up-to-2-42-ghz.html.

[44] NVIDIA, Jetson tx1. [Online]. Available: https://developer.nvidia.
com/embedded/jetson-tx1.

[45] O. Astra, Astra pro. [Online]. Available: https : / / orbbec3d . com /
product-astra-pro/.

[46] NXROBO. [Online]. Available: https://www.nxrobo.com/product_
product/cate/1.

[47] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler,
and A. Y. Ng, “Ros: An open-source robot operating system,” in ICRA
workshop on open source software, Kobe, Japan, vol. 3, 2009, p. 5.

R-4

https://developer.nvidia.com/tensorrt
https://ark.intel.com/content/www/us/en/ark/products/78867/intel-celeron-processor-j1900-2m-cache-up-to-2-42-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/78867/intel-celeron-processor-j1900-2m-cache-up-to-2-42-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/78867/intel-celeron-processor-j1900-2m-cache-up-to-2-42-ghz.html
https://developer.nvidia.com/embedded/jetson-tx1
https://developer.nvidia.com/embedded/jetson-tx1
https://orbbec3d.com/product-astra-pro/
https://orbbec3d.com/product-astra-pro/
https://www.nxrobo.com/product_product/cate/1
https://www.nxrobo.com/product_product/cate/1

	Abstract
	Introduction
	Background
	Challenges
	Human-Friendly Navigation
	Organization of Report

	Related Work
	Deep Learning-based Visual Perception
	Traditional Approaches for Robot Navigation
	Learning Based Approaches for Robot Navigation
	Human-Friendly Navigation

	Preliminary
	Problem Definition
	State Space
	Action Space
	State Transition Model
	Reward Function
	Observation Space

	Deep Reinforcement Learning

	Approach
	Visual Perception
	Sensor Fusion
	Human-Friendly Navigation

	Experiments
	Experiment Setup
	Hardware
	Software

	Experiment Results
	Single Human Interaction Experiment
	Mutli-Human Experiments

	Conclusion

