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Abstract

Generative Adversarial Networks (GAN) are able to implic-
itly model distributions, and demonstrate great potential
on tasks such as image generation, image translation, etc.
However, GAN requires substantial data and displays slow
convergence during training, making the training process
time-consuming as well as data-consuming. On the other
hand, recent advances in meta-learning algorithms make
fast adaptation possible for supervised-learning tasks. In
this work, we consider combining GAN with various meta-
learning algorithms to enable data and time-e�cient GAN
adaptation. Few-shot image generation experiments on
MNIST and Omniglot show for the �rst time that Model
Agnostic Meta-Learning (MAML) can be incorporated with
the GAN framework to yield competitive results. We also
investigate the possibility of combining GAN with First-
Order MAML and Meta-SGD, and point out appropriate
practices in implementation for each. Finally, we propose
using a pretrained classi�er as a critic to quantitatively
evaluate meta-trained GANs’ performance on few-shot
generation tasks, and report state-of-the-art few-shot gen-
eration performance.

1 Introduction

Deep Learning methods have achieved human-level per-
formance on various tasks [8, 16]; speci�cally, Generative
Adversarial Networks (GAN) are able to implicitly model
distributions and excel at generating data such as images
[8]. While state-of-the-art GANs generate samples indis-
tinguishable by humans, their training processes are ex-
tremely data-consuming and time-consuming [8, 16]. De-
spite GANs’ compelling ability to synthesize data, there is
often little value in doing so if the data size that enables
e�ective GAN training is readily available. In this respect,
GAN has not yet fully bridged the gap between arti�cial
and human intelligence. The latter is capable of leveraging
past experience for much faster learnin. For example, a
middle-schooler seeing the character φ for the �rst time
can quickly generalize to drawing it through a few samples,
while GANs require more training time and substantially
more training instances to produce results of similar qual-
ity.
We observe that this disrepancy in generalization power
results from the fact that humans utilize prior information
obtained from past seen tasks, while GAN is trained with
no prior knowledge: the middle-schooler has drawn hun-
dreds of distinct characters before seeing φ, while GAN
is trained from randomly initialized weights. This expla-
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nation suggests that to achieve human-level adaptation
performance, we must somehow allow GAN to utilize prior
knowledge. Speci�cally, GAN should leverage prior knowl-
edge obtained from tasks seen before to improve its general-
ization performance over similar unseen tasks. Fortunately,
meta-learning, or learning to learn [27], provides a read-
ily studied framework under which past experiences can
be integrated with novel information: meta-learning algo-
rithms extract transferrable knowledge from a multitute of
seen tasks to optimize performance on novel tasks [26, 28],
and have achieved state-of-the-art performance in many
supervised and reinforcement learning problems [4]. Some
meta-learning algorithms learn update functions [3, 7, 26],
while recent advances show the potential of meta-learning
algorithms that learn model initializations [10, 20]; cer-
tain works show how both can be learned at the same
time [4, 18]. Initialization-based meta-learning algorithms
have been receiving increasing attention; not only do they
achieve impressive performance in supervised learning
scenarios e.g. few-shot image classi�cation [4] and rein-
forcement learning, they also provide insight on combining
powerful models with prior information to allow fast adap-
tation [10]. Therefore, it is compelling to combine meta-
learning algorithms with the GAN training framework. In
this work, we limit our investigation to initialization-based
meta-learning algorithms, speci�cally MAML, First-Order
MAML (FOMAML), and Meta-SGD, because of their sim-
plicity and good performance [4, 10, 18, 20].
However, there still exist practical obstacles in incorpo-
rating such algorithms with GAN, due to the nature of
adversarial training and the meta-learning setup. First, the
combined meta-learning GAN framework proves di�cult
to train. Previous works have identi�ed signi�cant training
di�culty on the part of both meta-learning and GAN algo-
rithms [4, 5], and our experiments corroborate that straight-
forward combination of several meta-learning algorithms
and GAN constantly results in training failure. Second,
there exists no quantitative measure for models’ perfor-
mance on few-shot generation tasks; human evaluations
of image quality have high variance and are potentially
biased.
Our work investigates and provides practices that over-
come these aforementioned obstacles, and reports the �rst
conception and successful combination of MAML with
GAN to the extent to our knowledge. Our work shows
that MAML can be used in a more general sense to opti-
mize nested objectives as opposed to a single loss function.
We note that Multi-Step Loss optimization (MSL), a stabi-
lizing technique for MAML proposed by Antoniou et al.,
greatly stabilizes training for our purposes [4]. Besides



MAML, we also investigate the performance of FOMAML,
and Meta-SGD when combined with GAN for image gener-
ation on MNIST and Omniglot [17]. We report results and
explanation for the results of each algorithm. Our work
also contributes a novel quantitative measure of using a
pretrained classi�er to evaluate meta-trained GANs’ few-
shot generation performance. The classi�er was pretrained
on training data for generation along with its labels, and
we use the critic to calculate the mean Negative Log Likeli-
hood (NLL) of generated images. We showcase improved
performance based on this metric compared to strong base-
lines.
The applications of the combination of meta-learning and
GAN extend beyond few-shot data generation: it is suitable
for any GAN scenarios where there exists a multitude of
similar tasks to train on, yet at the same time limitations
such as data size or computational expenses that discour-
age conventional GAN implementation. Our experiments
show that compared to GAN that is trained from scratch,
meta-trained GAN displays much faster adaptation and
signi�cantly better generalization performance when few
data samples are available.

2 Related Works

Many well-studied meta-learning algorithms learn an
optimizer for task adaptation [3, 7, 26]. Our work is
mainly concerned with MAML, FOMAML, and Meta-SGD,
three initialization-based meta-learning algorithms which
achieve state-of-the-art generalization performance on var-
ious tasks. Finn et al. proposed MAML, a principled
meta-learning algorithm that optimizes validation loss
with respect to model initialization; the work called at-
tention the potential of initialization-based approaches
to meta-learning, and reported much improved perfor-
mance in both few-shot classi�cation and reinforcement
learning[10]. Finn et al. also proposed FOMAML, a �rst-
order approximation of MAML which does not require
computing the Hessian while achieving comparable results
on few-shot classi�cation tasks. Antoniou et al. noted
MAML’s training instability, and contributed various mod-
i�cations to stabilize MAML training and achieve better
generalization performance [4]. Nichol et al. proposed
reptile, a �rst-order meta-learning algorithm that also
optimizes across-task generalization [20]. Li et al. pro-
posed meta-SGD, which extends meta-learned parameters
to learning rates for each parameter, and uses only one
inner-loop update; Li et al. showcases signi�cantly better
performance than MAML on Omniglot and Mini-Imagenet
classi�cation[18, 23].
Few-shot generative models have also been intensively
studied. Bartunov and Vetrov et al. used matching net-
works and variational autoencoders for few-shot image
generation [6]. Gregor et al. developed Deep Recurrent At-
tention Writer (DRAW) [12], and Rezende et al. proposed
using a sequential generative model to generalize it for
few-shot learning [25]. The generation quality of DRAW

is compelling, but DRAW is limited to generating images,
speci�cally, characters. Liu et al. demonstrated realistic
pet-swap results with Few-Shot Unsupervised Image-to-
Image Translation (FUNIT) [19]. FUNIT uses conditional
GAN with architecture engineered for image translation;
the prior of translation tasks is encoded by the FUNIT archi-
tecture and training procedure, thus FUNIT is limited in its
few-shot applications to image translation tasks. Clouatre
et al. proposed Few-shot Image Generation with Reptile
(FIGR), which combines reptile with GAN for few-shot im-
age generation [9]; the work reported visual results, but did
not quantitatively evaluate generation quality. We use rep-
tile trained with WGAN, as proposed by Clouatre et al., as
an advanced baseline against which we evaluate our model.
Reed et al. �rst combined MAML with autoregressive mod-
els to learn the distribution over task-speci�c distributions,
yet did not leverage GAN’s capability to e�ciently model
distributions [24].
We did not come across any published literature that com-
bines MAML and GAN for multi-tasking, or systemati-
cally investigates the possibility of combining initialization-
based meta-learning algorithms with GAN; we also note
the absense of a quantitative metric for few-shot genera-
tion that is widely applicable. Our work makes the unique
contribution of formulating the combination of MAML and
GAN, pointing out revisions vital to its training stability
and its state-of-the-art few-shot generation performance.
We also report results of combining GAN with FOMAML
and meta-SGD.

3 Preliminaries

3.1 Generative Adversarial Networks

Generative Adversarial Network (GAN) has achieved im-
pressive results on tasks including data generation and
image super-resolution [1, 2]. Conventional GAN training
framework consists of simultaneous training of a genera-
tor G and a discriminator D [11]. D seeks to distinguish
between data generated by G and real data, while G seeks
to learn a mapping from prior distribution z to the data
distribution. GAN’s training objective is formulated in (1),
where Pdata is the underlying data distribution, and x is
data sampled from Pdata.

min
G

max
D
Ex∼Pdata [log(D(x)] + Ez∼Pz [log(1 − D(G(z)))]

(1)
One variant of GAN we use is Wasserstein GAN (WGAN),
proposed by Arjovsky et al. [5]. We use gradient penalty
enforce the Lipschitz constraint [13]. The WGAN objective
is shown as follows:

min
G

max
| |D | |L ≤1

Ex∼Pdata [D(x)] − Ez∼Pz [D(G(z))] (2)

Arjovsky et al. proved that optimizing objective as in (2)
is equivalent to minimizing the Wasserstein distance be-
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tween G(z) and x, and that Wasserstein distance has better
theoretical properties that help stabilize GAN training. Our
experiments corroborate Arjovsky et al.’s claim that WGAN
improves training stability: While objective (1) only accepts
MAML, (2) can incorporate both MAML and reptile. We
�nd that using the wasserstein objective results in better
NLL performance, so uses it by default for our experiments.
We base our GAN architecture on DCGAN proposed by
Radford et al. for our experiments becuase it o�ers sta-
ble training [22]; the model, as shown in �gure 1, uses
LeakyReLU with α=0.2 for activation, and omits normal-
ization layers.

Figure 1: GAN architecture

3.2 Model-Agnostic Meta-Learning

Model-Agnostic Meta-Learning (MAML) optimizes model’s
task-speci�c loss with respect to its initialization [10]. The
MAML training framework resembles those of other meta-
learning algorithms we investigate in this work: in the
inner-loop, the model starts from the meta-learned initial-
ization to adapt quickly to each task in a meta-batch. The
outer-loop then optimizes the validation loss computed
using the task-adapted parameters with respect to the ini-
tialization. MAML’s loss is shown in below.

LMAML = Eτ∼Pτ [Lτ (ϕ
k
τ )]

Whereϕ is the model initialization to be learned in the meta-
learning process, and Pτ is a distribution of tasks such that
each task τ has a loss function Lτ that evaluates model
parameters. ϕkτ is the parameter that has been updated k
steps on task τ using gradient-based optimizers that can
be di�erentiated through.
Because MAML requires computing the Hessian of the
loss with respect to the parameters, it is memory and
computation-demanding. Finn et al. proposed a First-Order
approximation of MAML (FOMAML), and noted that it
signi�cantly reduces computational overhead while yield-
ing results similar to MAML [10]. Nichol et al. pointed
out is equivalent to ignoring the Jacobian of SGD update:
∇ϕLMAML is approximated using ∇ϕkτ LMAML , which only
requires computing the gradient [20].
However, MAML su�ers from training instability, and
works have observed that MAML is sensitive to model
architecture and hyperparameters [4]. Antoniou et al. pro-
posed Multi-Step loss Optimization (MSL), revising the
MAML loss to include not only the validation loss for the

�nal step, but also weighted loss for every intermediate
step. The MAML-MSL objective is shown in (3).

L
weiдhted
MAML = Eτ∼Pτ [

k∑
i=1

βiLτ (ϕ
i
τ )] (3)

where β is a weight vector for each inner-loop step. An-
toniou et al. suggests annealing the MSL objective to the
original MAML objective as training progresses, but we
�nd this practice detrimental to MAML-GAN training sta-
bility. A special case of (3) is when β is uniform, i.e. equal
weights are assigned to each inner-loop step; The uniform
MAML-MSL objective is shown in (4).

L
unif orm
MAML = Eτ∼Pτ [

1
k

k∑
i=1

Lτ (ϕ
i
τ )] (4)

For our work, we use the uniform MAML-MSL objective,
and we observe stability improvement over the both origi-
nal MAML objective and annealed MAML-MSL objective.

3.3 Meta-SGD

Li et al. proposed meta-SGD, which learns the update di-
rection as well initialization; meta-SGD limits task-speci�c
update to a single step[18]. Li et al. argued that learn-
ing per-parameter learning rate allows greater adaptation
capacity, and showcased competitive generalization perfor-
mance on Omniglot and mini-imagenet. Meta-SGD’s loss
is shown in (5).

Lmeta−SGD = Eτ∼Pτ [Lτ (ϕ − α ◦ Lτ (ϕ))] (5)

where α is the learning-rate vector, and ◦ denotes element-
wise multiplication. Meta-SGD optimizes Lmeta−SGD w.r.t.
both α and ϕ; note that the task-speci�c update direction,
while solely dependent on the gradient, is not necessarily
the same as the latter’s.

4 Methods

4.1 Multi-task GAN using MAML

In this section, we formulate the multi-task GAN problem
and show that it naturally incorporates MAML. Recall that
to model a single distribution X , GAN optimizes the fol-
lowing objective, where G and D are parameterized by θ
and ϕ respectively:

V (θ ,ϕ) = Ex∼X [D
ϕ (x)] − Ez∼Pz [D

ϕ (Gθ (z))] (6)

min
θ

max
ϕ, | |Dϕ | |L ≤1

V (θ ,ϕ)

Modi�cations to objective (6), i.e. applying GAN variants
that have di�erent single-task objectives, are straightfor-
ward extensions, and do not a�ect the conclusion.
Multi-task GAN learns a distribution over distributions.
We denote each distribution τ and the meta-distribution Pτ .
In the case of Omniglot, samples drawn from τ are images
of a character, while τ is drawn from Pτ , distribution over
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characters. Thus the multi-task objective is as follows,
where θτ and ϕτ are speci�c to each task:

Eτ∼Pτ [min
θτ

max
ϕτ

V (θτ ,ϕτ )] (7)

MAML constrains the task-adapted parameters such that
they are updated from the meta-learned initialization. Sim-
ilarly, we constrain θτ and ϕτ such that they are updated
from initializations θ and τ to optimizeV (θτ ,ϕτ ). θτ andϕτ
can be rewritten as follows, where ∆θτ and ∆ϕτ optimizes
V (θτ ,ϕτ ):

θτ = θ + ∆θτ
ϕτ = ϕ + ∆ϕτ

Therefore (7) can be rewritten as:
Eτ∼Pτ [min

θ
max
ϕ

min
∆θτ

max
∆ϕτ

V (θτ ,ϕτ )] (8)

Because θ and ϕ are independent of τ :
min
θ

max
ϕ
Eτ∼Pτ [min

∆θτ
max
∆ϕτ

V (θτ ,ϕτ )] (9)

Just as we optimize the GAN mini-max objective using
gradient descent, we can approximate the mini-max ex-
pression inside the expectation with k gradient descent
iterations. Using U k

τ as an operator that updates param-
eters for k steps on task τ , the multi-task GAN objective
under MAML becomes:

min
θ

max
ϕ
Eτ∼Pτ [V (U

k
τ (θ ),U

k
τ (ϕ))] (10)

Operator U can be di�erentiated through by passing a
gradient through a gradient, which is readily implemented
in standard deep learning libraries such as Pytorch [21].
Thus we can optimize objective (10) using gradient descent.
For our work, we use RMSprop as the optimizer for both
inner-loop and outer-loop objectives. The MAML-GAN
algorithm is shown in 1.

4.2 Evaluating meta-trained GANs

We propose using a pretrained classi�er as a critic to esti-
mate the Negative Log-Likelihood (NLL) of the generated
images, and using classi�cation accuracy as an intuitive
metric of generation quality. Averaging NLL over unseen
test tasks as shown in (11) provides a quantitative metric
to evaluate the performance of meta-trained GANs.

NLL(G) = Eτ∼Pτ ,x∼G(z)[− log(P(τ |x))] (11)
G is the generator adapted on τ , and P(τ |x) is given by the
critic. We note that the critic assigns a maximum likelihood
of 1 and a minimum of 0 for any x , therefore the proposed
metric has a minimum of 0 and no upper bound.
We approximate the expectation in (11) by sampling 256
test tasks (with replacement), and computing the average
NLL and accuracy on 4096 generated samples for each task
after 10-step adaptation.
A ResNet with four residual blocks is trained as the critic
[14]. The model achieves 99.4% and 81.7% accuracy on
MNIST and Omniglot, respectively. Model architecture is
shown in �gure 2.

Algorithm 1 MAML-GAN
Require: Pτ : distribution over generation tasks
Require: γ , β : outer and inner-loop learning rates
Require: N ,k : meta batch size, no. of inner-loop steps
Require: ϕ,θ : parameters of D and G
Require: RMSprop(L,ϕ,α): Update ϕ in direction of L

with learning rate α
Randomly initialize ϕ,θ
while not converge do

sample {τ1,τ2...τN } ∼ Pτ
Lmeta
D ,Lmeta

G = 0
for τi in {τ1,τ2...τN } do
ϕi ,θi = ϕ,θ
for inner-step in range(k) do

sample x ∼ τi , z ∼ Pz
calculate Dloss ,Gloss using ϕi ,θi
ϕi ← RMSprop(Dloss ,ϕi , β)
θi ← RMSprop(Gloss ,θi , β)
resample x ∼ τi , z ∼ Pz
calculate Dvalloss ,G

val
loss using ϕi ,θi

Lmeta
D ← Lmeta

D + 1
NkD

val
loss

Lmeta
G ← Lmeta

G + 1
NkG

val
loss

end for
end for
ϕ ← RMSprop(Lmeta

D ,ϕ,γ )
θ ← RMSprop(Lmeta

G ,θ ,γ )
end while

Figure 2: ResNet critic architecture

5 Experiments

We combine GAN with MAML, FOMAML, and Meta-SGD
on MNIST and Omniglot [17]. For all our experiments, β
and γ are set to 0.0001, and k to 10; refer to algorithm 1 for
the hyperparameters. Training loss plots of the reported
experiments can be found in the appendix.

Dataset MNIST consists of 60000 training and 10000 test
images, split evenly across 10 digits. Due to the unsu-
pervised nature of our task, we combine the training and
test images for each digit. Digits 0 to 6 are used for meta-
training, and 7 to 9 for evaluation. Thus, model has access
to 7000 images for each of seven training tasks, and is re-
quired to generate images for three evaluation tasks using
limited instances and gradient steps.
Omniglot consists of 1623 characters and 32460 images;
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there are 20 images for each distinct character. Omniglot
is a much more challenging few-shot generation problem
than MNIST because not only are there more generation
tasks, there are also less instances to train on per-task and
for the meta-learning process in general. We comply with
the train-test task split originally o�ered by the dataset:
model is meta-trained on 964 characters, and evaluated
on 659 characters. Examples of Omniglot task images are
shown in �gure 3. The �rst �ve columns contain images
from training tasks, and the right, test tasks.

Figure 3: Omniglot task images

Failed Combinations Despite our attempts, combina-
tion of meta-SGD with GAN fails to adapt quickly to each
task. First, meta-SGD cannot be trained with the wasser-
stein objective; we use objective (1) for the reported exper-
iments. Second, as shown in �gure 4, though the model
generate reasonable images, the adapted parameters fail
to generate distinct characters for each task: adapted gen-
erations of digits 7 (columns 4-6), 8 (columns 7-9), and 9
(columns 10-12) are all similar. We hypothesize that meta-
SGD’s training failure may be due to the disrepancy be-
tween the algorithm’s adaptation capacity and the com-
plexity of task-speci�c GAN training. Meta-SGD adapts to
a new task in one update, which might not be enough for
e�ective GAN adaptation.

Figure 4: MNIST digits generated by metaSGD-GAN. Prior
generations are boxed in blue

Successful Combinations Under algorithm 1, we are
able to successfully train DCGAN with MAML; MAML-
GAN yields most stable training and meaningful generated
images.
While DCGAN is also capable of generating realistic dig-
its, taken su�cient training, MAML-GAN demonstrates
much greater adaptation e�ciency. Figure 5 highlights
the advantage o�ered by MAML meta-training: The upper

half of the �gure showcases generated images after meta-
trained GAN is adapted on unseen digits; generation of
meta-trained initialization is boxed in blue. The lower half
is identical in setup except that it reports generation using
random initialization. One can see that while randomly
initialized GAN just began to trace the digits’ approximate
shapes, meta-trained GAN has already begun to produce
discernable digits.

Figure 5: MNIST digits generated by MAML-GAN. Upper
half contains generated images of model adapted on unseen
digits for 10 steps; lower half contains generated images
of randomly initialized GAN using the same setup. Prior
generations are boxed in blue.

MAML-GAN also achieves impressive generalization re-
sults on Omniglot. Figure 6 demonstrates that the meta-
trained model is capable of quickly adapting to to the struc-
ture of both simple as well as complex characters. We note
that one important challenge Omniglot o�ers is the scarcity
of training samples: each Omniglot character contains only
20 images. As shown in �gure 6, randomly initialized DC-
GAN over�ts the task after being su�ciently trained (500
updates). The over�tting model generates blurry images
and proves unable to capture the structure of the character.

We are also able to use FOMAML, which reduces MAML’s
computational burden. We note that compared to MAML,
FOMAML’s losses �uctuate greatly, and the meta-trained
initializations generate very di�erent images: while MAML
priors resemble the characters meta-trained on, as shown
in �gure 5, FOMAML priors are comparatively meaning-
less and distinctly di�erent in various stages of training.
FOMAML training is more unstable than both MAML and
reptile. Interestingly, when FOMAML-GAN converges on
MNIST, it signi�cantly outperforms both MAML and rep-
tile; however, FOMAML’s losses are unstable on Omniglot;
correspondingly it underperforms them on the dataset.

5.1 Quantitative Analysis

In this section, we use the aforementioned NLL metric
to quantitatively evaluate combinations’ performance on
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Figure 6: MAML-GAN results on Omniglot characters. Up-
per half contains generated images of MAML-trained GAN
adapted on unseen characters for 10 steps; lower half con-
tains generated images of randomly initialized GAN su�-
ciently trained on unseen characters. Columns 1 and 5 are
real images.

Figure 7: FOMAML-GAN prior generations on MNIST.
From left to right are on 5k, 10k, 15k, and 20k meta-updates
respectively.

MNIST and Omniglot. For all experiments, we randomly
sample 256 times (with replacement) from each meta-task’s
test tasks. For each test task, the model adapts 10 steps,
and NLL is averaged over 4096 generated instances.
Table 1 shows that GAN trained from scratch generates un-
convincing results, and the critic makes predictions based
on generated images that are no better than random guess-
ing. Interestingly, MetaSGD-GAN has signi�cantly higher
NLL than the randomly initialized baseline. This is because
meta-SGD generates convincing digits, but generally not
of the one of the adaptation task; this behavior can be seen
in �gure 4. Convincing images causes NLL to be very low
for a digit, and in turn causes NLL for the conditioned label
to be high. Compared to the baselines, FOMAML-GAN and
MAML-GAN o�ers improvement consistently across NLL
and accuracy. Visual results corroborate that they adapt
quickly to generate more speci�c and realistic samples ??.
The quantitative analysis corroborates visual results.

Table 1: Quantitative Results

Algorithm Task NLL Accuracy
Real

MNIST

0.047 0.997
Not pre-trained 15.296 0.099
FIGR 3.195 0.791
MetaSGD-GAN 45.474 0.102
MAML-GAN 2.730 0.823
FOMAML-GAN 1.449 0.881
Real

Omniglot

0.559 0.949
Not pre-trained 18.894 0.002
FIGR 4.383 0.378
MAML-GAN 3.919 0.392
FOMAML-GAN 5.286 0.328

(FO)MAML-GAN outperforms both randomly-initialized
and reptile baselines in terms of NLL and accuracy, demon-
strating our proposed approach’s multi-task data genera-
tion ability.

6 Conclusion and Future Work

Our work formulates combination of MAML and GAN
for multi-task data generation, and investigates the per-
formance of MAML-GAN, FOMAML-GAN, and metaSGD-
GAN on MNIST and Omniglot. We used NLL given by
pretrained classi�er as a quantitative metric to evaluate
few-shot generation performance, and report state-of-the-
art generalization performance based on this metric.
We took note that revising MAML to optimize multi-step
objectives is necessary for training stability and superior
performance. While MAML o�ers stable training and good
generation quality, FOMAML o�ers competitive perfor-
mance given its losses do not �uctuate greatly; we also
o�er explanations for the unsatisfactory performance of
metaSGD-GAN.
There are several promising directions for future work.

• Apply MAML-GAN, given its competitive perfor-
mance on MNIST and Omniglot, on larger, more com-
plicated datasets e.g. CIFAR100.

• Use MAML-GAN to enable fast-adaptation in other
GAN application scenarios e.g. few-shot style-transfer
and few-shot image translation.

• Explore the possibility and results of incorporating
batch normalization [15] into MAML-GAN; under
small batch sizes, e�ective batch normalization re-
quires running statistics.

• Conducting few-shot generation experiments on dis-
crete instead of continuous data e.g. multi-style text
generation.
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A Training losses

(a) MAML-GAN losses on MNIST (b) FOMAML-GAN losses on MNIST.

(c) metaSGD-GAN losses on MNIST. (d) FIGR losses on MNIST.

(e) MAML-GAN losses on Omniglot. (f) FOMAML-GAN losses on Omniglot.

Figure 8: Learning Curve
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