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Firefighters continually endanger their lives in order to rescue
others. This can leave them with severe burns; tens of thou-
sands of firefighters suffered from burn-related injuries world-
wide each year. Existing flame retardant fabrics cannot pro-
vide protection for the faces while superabsorbent hydrogel
cannot withstand prolonged exposure to flame. Developing an
anti-burn hydrogel using intumescent flame retardants would
greatly reduce these risks. This research presents the syn-
thesis of said hydrogel using biodegradable, non-toxic materi-
als: xanthan gum (XG) and resorcinol bis (diphenyl phosphate)
(RDP)-coated starch. Xanthan gum was added with RDP and
RDP-coated starch and then cross-linked to produce a hydro-
gel. When exposed to fire, the hydrogel rapidly forms a surface
char layer to insulate the heat source and to retain the ample
bound water which possesses a large specific heat and enthalpy
of evaporation. Flammability assessments were conducted on
sheepskins and chicken skins and cumulative heat per unit area
was plotted along the Stoll Curve. Results proved that 2.5%
RDP-xanthan gum + 10% RDP-Starch had the optimal flame
retardancy, demonstrating a prolonged skin-protection time of
45s and thus outperforming the commercial anti-burn super-
absorbent hydrogel by 114%. The synthesized samples were
then characterized with Thermalgravimetric analysis (TGA),
viscometry, Fourier transform infrared spectroscopy (FTIR),
and goniometry. The feasibility of the gel’s application is sup-
ported by its thermal stability, flame retardancy, shear-thinning
and hydrophilic properties, moderate pH, and non-toxicity, all
of which indicated that the anti-burn gel is a viable candidate as
a protective measure for not just firefighters but also for com-
mercial use around the globe. The novel concept of employing
the principle of intumescent flame retardants for anti-burn hy-
drogel offers new solutions to the research development in the
field of flame-retardant materials.

Keywords: hydrogel, intumescent flame retardants, starch, xanthan gum, re-
sorcinol bis(diphenyl) phosphate, skin protection

A. Introduction.
Firefighters are at a high stake of being burned when trying to
save the lives of civilians; in 2017, alone, 2,835 U.S. firefight-
ers suffered from burn-related injuries (1). Existing measures
including flame-retardant fabrics are not capable of protect-
ing faces or necks of firefighters, and there is currently no re-
port on flame-retardant hydrogel for skin protection, which,
if successfully developed, would be of great help to protect

Fig. 1. Graphical Abstract

firefighters from potential burns. However, fire retardants for
skin are required to be non-toxic and non-irritating. Commer-
cial flame retardants (FRs), which mainly incorporate halo-
genated additives or antimony oxides (2), cannot be used due
to their toxicity and potential to cause skin irritation. In re-
cent years, intumescent phosphates have become the research
focus for non-halogenated FRs due to their lower toxicity.
A typical intumescent fire-retardant (IFR) system includes a
carbonizing agent and an acid source to catalyze char forma-
tion (3). Since IFR systems pose significantly less threat to
both humans as well as to the environment (4), they would be
much more desirable for fire retardants for skin protection.

In recent years, many efforts have been made to further elim-
inate toxic chemicals in IFR systems. Several alternatives
have been used, one of which being starch, a carbohydrate
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that consists of a large number of adjoining glucose units via
glycosidic bonding (5). Having a semi-crystalline structure
in its natural forms, starch is inexpensive, environmentally-
friendly, biodegradable, and can be found in various crops
such as corn, wheat, rice, etc (6). Owing to its thermal stabil-
ity and charring capabilities (7), starch has been successfully
incorporated into fire retardants to enhance their performance
(8–10).
Resorcinol bis (diphenyl phosphate) (RDP), a biodegradable
phosphate that is found to be effective FR in readily charrable
polymers in previous research (11, 12), is also being used
in place of other toxic phosphates. It suppresses flames by
acting as an acid precursor and acid precipitate to promote
surface charring through esterification and dehydration (13).
Yet, RDP is in liquid form and has high mobility, making it a
challenge to reduce its bubbling under high temperatures. To
address this problem, Pack et al. found that RDP is able to
be attached to surfaces with hydroxyl groups, such as MMT-
clay, starch, cellulose, etc (14). Using this mechanism, Guo
et al. immobilized RDP by coating it to cellulose to produce
a composite with both excellent mechanical properties and
flame retardancy (15).
Apart from the requirement for nontoxicity, fire retardants for
skin also need to be adhesive to human skin in order to func-
tion effectively. Therefore, hydrogels, instead of dry powder,
would be the preferred form of fire retardants for skin due
to their high affinity for skin. The formation of hydrogel re-
quires the participation of cross-linking agents. Discovered
in the 1950s, xanthan gum (XG) is a natural biopolymer that
consists of a repeated unit formed by two mannose units, two
glucose units, and a glucuronic unit (16). Due to its nontoxic-
ity, high thermal stability, low flammability, and pseudoplas-
tic rheological properties, xanthan gum has a wide range of
applications in industries such as suspension stabilizer, thick-
ening agent, and controlled drug delivery purposes, etc. (17)
Previous research showed that mixing starch into xanthan
gum could improve stability, viscosity, and mechanical per-
formances of the gel (18, 19). Leone et al. prepared xanthan
gum mixed hydrogel that demonstrated superior heat capac-
ity, making it a good candidate for the cross-linking agent of
flame-retardant hydrogels (20).
Herein, this work aims to decrease the risk of burned-related
injuries of firefighters worldwide by presenting a novel con-
cept for preparing skin-protection hydrogel against fire em-
ploying the principle of intumescent flame retardants; to pro-
vide an uncomplicated method to synthesize such hydrogel
using an all biodegradable material combination of starch,
xanthan gum, and RDP; to validate the feasibility of the syn-
thesized hydrogel’s application by investigating its thermal
stability, spreadability, toxicity, and adhesiveness; and to dis-
cuss the mechanism of origin of the hydrogel’s flame retar-
dancy.

B. Materials and Methods.

Materials. Resorcinol bis(diphenyl phosphate) (RDP) used
in this research was purchased from ICL (Israel Chemicals
Ltd.) Industrial Products and the brand name is Fyrolflex

RDP®. Xanthan gum was obtained from Judee’s Gluten-
Free (Ohio, USA). Starch was purchased from local super-
markets. All Deionized (DI) water used was generated from
a Milli-Q®Water Purification System.

Table 1
Weight Percentage of Composition of Hydrogels

No. Sample XG RDP-
XG

RDP-
Starch

1 1XG 1.0 0 0
2 1XG10RDP-starch 1.0 0 10.0
3 2XG 2.0 0 0
4 2XG10RDP-starch 2.0 0 10.0
5 2.5XG 2.5 0 0
6 2.5XG10RDP-starch 2.5 0 10.0
7 1RDP-XG 0 1.0 0
8 1RDP-XG10RDP-starch 0 1.0 10.0
9 2RDP-XG 0 2.0 0
10 2RDP-XG10RDP-starch 0 2.0 10.0
11 2.5RDP-XG 0 2.5 0
12 2.5RDP-XG10RDP-starch 0 2.5 10.0

Preparation of RDP-coated starch and RDP-coated
xanthan gum. In order to obtain RDP-coated starch, RDP
and starch were weighed using a Mettler Toledo XPE204 an-
alytical balance in a weight ratio of 3:7 and poured into a
200ml beaker and manually stirred with a metal spatula for
10 minutes. The beaker was kept under 40 °C for 10 minutes
in a Hotpack vacuum oven. The mixed powder was then cen-
trifuged three times using an ARE-250 THINKY centrifuge.
The centrifuge was set at a speed of 750 rpm for 5 minutes
and defoaming at 2000 rpm for 10 seconds. The product was
kept in the Hotpack vacuum oven at 60 °C for 24 hours to
remove all remaining moisture. The RDP-coated xanthan
gum was prepared by first mixing RDP and xanthan gum in a
weight ratio of 1:3 and then processed using the same afore-
mentioned procedures.

Hydrogel preparation. Powders obtained from the previous
section were mixed with DI water in 50 mL polypropylene
centrifuge tubes to form xanthan gum (XG) based hydrogels.
The samples underwent 30 seconds of shaking using a Scien-
tific Industries Vortex-Genie 2 set at Level 10 and were then
put into a VWR Incubating Waver for 10 hours to ensure thor-
ough mixing. The temperature of the waver was set at 45 °C
and the level of tilting was set at 12. Samples with different
compositions of additives were listed out in the table below.
Samples with higher weight percentages (3 wt.%, 3.5 wt.%,
4 wt.%) of xanthan gum were also prepared, but they failed
to form uniform suspensions or hydrogels.)

Flammability assessments. A Bernzomatic Fat Boy blow-
torch fueled with propane gas was used to test the flame
retardant abilities of the hydrogel samples. The tests were
carried out on a self-assembled stand (as illustrated in Fig.3
and consists of two parts. In part one, a piece of sheepskin
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Fig. 2. Schemes for preparation of materials. Scheme 1)Formation of hydrogen bonding between starch and RDP. Scheme 2)Formation of hydrogen bonding
between xanthan gum and RDP. Scheme 3)Cross-linking between xanthan gum molecules.
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was cut into the size of 2cm*2cm to cover the bottom of a
2cm*2cm*0.5cm aluminum pan; 3g of hydrogel was trans-
ferred into the pan to completely immerse the skin. The
pan was mounted on the stand using three spring clamps to
fix positions; the distance between the surface of the sam-
ples and the tip of the blowtorch was 5cm. In part two, the
sheepskin and aluminum pans were replaced with chicken
skin, which was evenly cut into pieces of 3cm*3cm*1cm
and applied with 3g of hydrogel. For both sections, all sam-
ples were burned with the same flame intensity for 150s and
temperatures under the aluminum pan or chicken skin were
recorded using an Omega thermocouple. Temperature-time
curves were plotted by averaging the results from three as-
sessments for the same sample.
Cumulative heat per unit area has also been plotted along
with Stoll Criterion to determine the approximate exposure
time, te, before receiving second-degree burn injury (21),
which refers to the time length for blistering and unbearable
pain to occur (22).

S toll curve(J/cm2) = 5.0204× t0
e
.2901 (1)

The cumulative heat per unit area (Q) is calculated with the
following formula.

Q(J/cm2) =
m× c×∆T

A
(2)

where m is the mass of the chicken sample (g); c is the spe-
cific heat of the chicken sample [J/(g·°C)]; ∆ T is the change
in temperature between the temperature of the moment and
the initial temperature (°C); and A is the area of the chicken
sample (cm2) (23).The data of the specific heat of the chicken
sample was obtained to be 1.47kJ/(g·°C).

Characterizations. Thermogravimetric analysis (TGA) was
performed on a TGA/SDTA851e (Mettler Toledo, USA) to
study the thermal stability of the xanthan gum-based hydro-
gels. About 15 to 20 mg of sample was transferred to a
ceramic alumina crucible and heated from 35 °C to 750 °C
at a rate of 10 °C/minute under 20 mm/min nitrogen flow.
The rheological performances of the hydrogels were mea-
sured using a Bohlin Gemini HR Nano rheometer (Malvern
Instruments, UK). The steady shear rate measurements were
carried out in the shear rate range from 0.001 to 10 s−1 and
the sweep time was 100s. All measurements were conducted
at 37 °C to stimulate human skin temperature. The contact
angle measurements were performed with a CAM 200 Opti-
cal Contact Angle Meter (KSV Instruments, Finland). Dur-
ing the analysis process, a precise amount of 5 µL of hydro-
gel was transferred onto a piece of sheepskin controlled by
an Eppendorf™ Research pipette (Eppendorf, Germany) and
the contact angles were calculated using the built-in software.
Multiple droplets in each sample were measured and the re-
sults were obtained by taking the average and standard devi-
ation of population of each trial. A Thermo Scientific Nico-
let 6700 (Thermo Fisher Scientific, USA) Fourier-transform
Infrared Spectroscopy was utilized to characterize pure XG,
pure RDP, pure starch, 30 wt.%RDP-coated starch, and 33.3

wt.%RDP-coated XG. A calibration for the background noise
was done before the actual tests. Each spectrum was an av-
erage result of thirty-two scans at a resolution and all tests
are done at room temperature. The pH measurements were
performed on all hydrogel samples using pH Indicator Strips
(range 0-14, VWR International, USA).

C. Results and discussion.

Flammability assessments on sheepskin.
Flammability assessments on sheepskin were conducted on
all the 12 XG-based hydrogel samples, the temperature of
these samples at different times were recorded, and their
respective temperature-versus-time graphs were depicted in
Fig.4.(a) (b) (c) (d) (e). Videos of the burning tests are pro-
vided in supporting information. From the temperature curve
and experimental videos, three conclusions can be general-
ized as follows:
1) Samples with higher concentrations of XG generally had
better performances than those with lower concentrations. As
illustrated by Fig.4, the sample with 1% RDP-XG + 10%
RDP-starch had the highest final temperature compared to its
counterparts with higher XG concentrations, reaching over
100 °C after 140 seconds. Its rate of temperature increase
also remained stable for the shortest period of time and sig-
nificantly increased at 105 seconds, at which time the flame
burned out all the gel on the aluminum tin. On the con-
trary, the sample with 2.5% RDP-XG + 10% RDP-starch had
smaller fluctuations in temperature, a longer period of stable
temperature increase (25 seconds longer), and a lower final
temperature (approximately 20°C lower) (Fig.4. (e).) .
2) Given that the concentrations were the same, samples
coated with RDP-starch generally performed better than ones
that did not. Notably, according to Fig.4. (a), the 1%, 2%,
and 2.5% RDP-XG + RDP-starch hydrogels outperformed
all of its counterparts with the same concentrations in terms
of final temperature and temperature stability.
3) The incorporation of RDP alone did not improve flame re-
tardancy of XG gels. Increased fire retardancy can only be
observed when RDP-starch is present in the gel. Fig.4 shows
that, across all concentrations, RDP-XG gels had higher tem-
peratures than pure XG gels in the entire heating process. The
highest final temperature in the burning test, 213 °C, was ob-
tained by 1% RDP-XG. Among all 12 hydrogel samples, the
one with 2.5% RDP-XG + 10% RDP-Starch exhibited the
best flame retardancy. It stayed below 48 °C for 50 seconds,
the minimum temperature at which a first-degree burn could
occur on human skin, given prolonged exposure (24), and be-
low 55 °C for over 110 seconds, the threshold temperature for
a second-degree burn to occur. Shown in Fig.5 are images of
hydrogel samples at 0s, 75s, and 150s during burning and the
recovered sheepskin remains after burning. When pure XG
gels and RDP-XG gels were being heated, there was bub-
bling on the surfaces of the gels, and only small amounts of
char formed and clustered at the center. Samples coated with
RDP-starch exhibited less bubbling and formed thicker, more
uniform char layers. Except for the 1% wt XG-based gels, all
the RDP-starch coated hydrogels had sheepskin remained at
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Fig. 3. Illustration of the set-up for burn tests.

the bottom of the aluminum tin. 2.5% wt. pure XG gels and
2.5% wt. RDP-XG gels also had skin remains after burning.

Flammability assessments on chicken skin. Similar as-
sessments are also conducted on evenly cut chicken skin
using the best performing samples in section one of the
flammability assessments. As shown in Fig.4 and Fig.7, the
chicken skin not covered with hydrogel (control) was heav-
ily burned and the final temperature was 83°C. For the 1
wt.% XG sample, the general temperature throughout the
burn test showed a significant decrease compared to the con-
trol sample, which may be attributed to the slight charring
of xanthan gum and the endothermic evaporation of wa-
ter. For the 2.5XG/10RDP-starch, 2RDP-XG/10RDP-starch,
and 2.5RDP-XG/10RDP-starch samples, uniform char lay-
ers over the samples’ surface were observed. Such char lay-
ers’ formation is central to intumescent flame retardants as
the char limits the spread of flame and retains the hydrogel
(25). When comparing these three hydrogels, it can be iden-
tified that 2.5RDP-XG/10RDP-starch remained the best per-
forming sample with the lowest temperature over 150s, fol-
lowed by 2RDP-XG/10RDP-starch and then 2.5XG/10RDP-
starch. All three samples’ final temperatures were around
55°C, which is consistent with the first part of the flamma-
bility assessment. Results from a commercial flame retardant
gel were also included in this experiment. It can be seen from
Fig.4(f) that the commercial gel did successfully decrease the
overall temperature compared to the control and the 1XG hy-
drogel, which can be ascribed to its superabsorbent nature
(26). Yet, due to the lack of charring agent, no char layer was
formed, which resulted in the loss of bound water and a rise
in temperature after around 80s and thus led to a higher final
temperature at 65°C than the XG-based hydrogels. 2.5RDP-
XG/10RDP-starch outperformed the control by 33% and the
commercial product by 21% in regard to final temperatures
in the flammability assessments on chicken skin.
From the cumulative heat per unit area data plotted against
time in seconds along the Stoll curve, as shown in Fig.6, it
can be seen that curve of the 2.5RDP-XG/10RDP-starch sam-
ple crosses the Stoll curve at 45s, while commercial product
crosses at 21s and the control, bare chicken skin, crosses at

2s. As the time of the intersection with the Stoll curve is
the exposure time before receiving second-degree burn in-
jury, 2.5RDP-XG/10RDP-starch demonstrated a prolonged
skin-protection time of 45s, outperforming the commercial
anti-burn superabsorbent hydrogel by 114%.

Thermal stability tests. The thermal stabilities of pure XG,
RDP-Starch coated XG, RDP-XG, and RDP-Starched coated
RDP-XG were investigated by thermogravimetric analysis
(TGA). Four main thermogravimetric characteristics in a sin-
gle stage of thermal degradation are shown in Table 2, i.e.
Tonset, the temperature at which an observable thermal de-
composition starts (1% weight loss); Tmax, the temperature at
which the rate of thermal degradation reaches its local max-
imum; Tendset, the point at which a stage of thermal degra-
dation is complete; W%, the weight percentage loss during
each stage. (27) As presented in Table 2, the cross-linking
between RDP and XG did not affect the thermal stability of
the hydrogels, as both XG and RDP-XG gels only displayed
a single-stage weight loss from 90 °C to 110 °C, which is
attributed to the loss of both loose and bound water (28).
Compared to pure XG samples, the RDP-coated sample had
a slightly higher Tmax and Tendset. After the first stage, XG
and RDP-XG samples had residues of approximately 3% and
started to decompose slowly as the temperature increased.
In the 260 °C– 350 °C range, RDP-coated XG sample dis-
played a higher rate of decomposition, as shown in Fig.8 be-
low. Previous studies have shown that this was caused by the
thermal decomposition of RDP. (29) The presence of starch,
however, significantly enhanced the thermal stability of XG-
based gels. After the evaporation of bound water, samples
coated with RDP-starch had higher residues of over 10%
and further underwent a second-stage thermal decomposition
from 250 °C to 360 °C, in which both RDP-starch coated
RDP-XG and RDP-starch coated XG samples displayed 5%–
9% weight losses. Mass loss in this stage is caused by the
degradation of starch, as pure starch also degrades at this
temperature (Fig.8.a). In general, the RDP-XG/RDP-starch
demonstrated a relatively high thermal stability, which would
guarantee the absence of toxic volatile at a low temperature,
adding to the application value of the gel.
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Fig. 4. Temperature-versus-time graphs of all hydrogel samples on sheepskin and chicken skin. a) Samples with 1% XG on sheepskin. b) Samples with 2% XG on
sheepskin. c) Samples with 2.5% wt. XG on sheepskin. d) Samples with XG + RDP-Starch on sheepskin. e) Samples with RDP-XG + RDP-Starch on sheepskin. f) Samples
on chicken skin

Rheology analysis. The viscosity is plotted as a function
of shear rate to understand the rheological properties of the
hydrogels. As these hydrogels are required to be applica-
ble to the skin, thixotropic, the property of viscous gels to
flow when stressed, is a crucial parameter for the evaluation
of their application practicality. According to Fig.9, viscos-

ity decreased with the increase of shear rate, indicating the
shear-thinning behavior of all samples. Since shear-thinning
is a special case of thixotropic behavior, which takes zero-
time to return to the liquid’s initial stage (30), the feasibility
of being applied to the skin is therefore validated. Moreover,
it can be noted from Fig.9. (a)(b)(c) that the higher the weight
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Fig. 5. Hydrogels at 0s, 75s, and 150s of flammability assessments and the recovered sheepskin remains.

percentage of XG or RDP-XG, the more viscous the hydro-
gel. Also, under the condition that the XG concentrations
were the same, samples with RDP-starch were always the
ones with the highest viscosity. The addition of RDP-starch
increased the viscosity of both XG or RDP-XG hydrogels,
which is in line with the finding of Abduloma et al. that the
overall viscosity of xanthan-starch mixture would be greatly
enhanced because xanthan promotes the association between
the mixture’s granules (18). In addition, the coating of RDP,
if reaching a certain amount, would decrease the viscosity (as
shown by Fig.9. (b)(c)), and this may be attributed to the liq-
uid nature of RDP. Thus, referring to Fig.9. (d) and under the

knowledge that viscous gels adhere better to human skin (31),
it is determined that 2.5%XG+10%RDP-starch has the opti-
mal rheological performances in terms of viscosity, followed
by 2.5%RDP-XG+10%RDP-starch.

FTIR Spectra. Fourier-transform Infrared Spectroscopy was
employed to investigate the formation of hydrogen bonding
between RDP and XG/starch. As depicted in Fig.10, the
spectrum of pure xanthan gum displayed a broad peak at
around 3300 cm−1, indicating the presence of O-H bonds in
the alcohol groups of xanthan gum(32), whereas pure RDP
showed no absorption in this region. In the FTIR spectrum
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Fig. 6. Cumulative heat per unit area of against time curves of the control,
commercial anti-burn superabsorbent hydrogel, and the synthesized 2.5RDP-
XG/10RDP-starch plotted along the Stoll curve.

Table 2
Four main characteristics of thermalgravimetric analysis

No. Stage Tonset
(°C)

Tmax
(°C)

Tendset
(°C)

Loss
(%)

Residue
(%)

5 1 38.9 101.4 118.1 97.4 2.61
6 1 37.0 93.7 143.0 89.6 10.4

2 276.2 304.2 353.4 5.89 3.29
11 1 36.3 107.8 127.9 96.9 3.07
12 1 38.9 91.1 130.4 86.1 13.9

2 276.9 293.9 370.4 8.76 3.24

of RDP-XG, the transmittance curve exhibited a similar pat-
tern, but the peak in the same region was broadened and had a
higher absorbance rate. This is an indication of an increase in
bond lengths of O-H covalent bonds due to their involvement
in hydrogen bonding between RDP and XG (33). Exami-
nation of RDP-Starch yielded similar results, as depicted in
Fig.10. Again, the broadening and deepening of the transmit-
tance curve between 3100 cm−1 and 3600 cm−1 strongly sug-
gests the existence of hydrogen bonding between RDP and
starch.

Goniometry. The contact angles of hydrogel samples on the
sheepskin were determined through goniometry to simulate
the mechanical behavior of the gels on human skin. The test
data are shown in Fig.11 below and the contact angle im-
ages of the four best performing samples in the burn tests
are shown in Fig.12. As hydrophilic surfaces are known to
have contact angles between 10° and 90°, this result demon-
strated the outstanding hydrophilicity properties (34), which
may be attributed to the fact that water accounts for a signif-
icant weight percentage of the hydrogels. The average con-
tact angles of all samples were approximately between 45°
to 60°, which are comparable with the contact angles of wa-
ter on human skin (between 50° and 60°)(35), proving the

spreadability and applicability of the hydrogel to the human
skin.

pH test. pH tests were conducted on all XG-based gels in
order to test their potential to cause skin irritation. The pH
values of all the hydrogel samples are shown in Table 3. All
samples proved to be neutral to slightly acidic, having pH
values between 5 and 7. The presence of phosphoryl groups
makes RDP slightly acidic; and when added into XG gels,
RDP lowers the pH value of the flame-retardant gels. Starch
also slightly reduces the pH values of the gels, but the slight
acidity of RDP and starch will not do harm to human skin in
that natural skin surface pH is on average below 5(36).

Table 3
pH Values of the Hydrogel Samples

S ample pH Value
1XG 7

1XG10RDP− starch 6
2XG 7

2XG10RDP− starch 6
2.5XG 7

2.5XG10RDP− starch 6
1RDP−XG 6

1RDP−XG10RDP− starch 5
2RDP−XG 6

2RDP−XG10RDP− starch 5
2.5RDP−XG 6

2.5RDP−XG10RDP− starch 6

Flame retardancy mechanisms. Based on the analysis
above and previous research on the flame retardancy mecha-
nisms of RDP, the plausible flame retardancy mechanism of
RDP-coated XG+ RDP-Starch is illustrated in Fig.13. When
RDP-coated XG+ RDP-Starch was exposed to the flame, the
cross-linking between molecules broke, followed by the va-
porization of bound water in the hydrogel. As the tempera-
ture increased, starch and XG experienced dehydration pro-
cess to form ether segments (37), while at the same time RDP
was heated into the gas phase, releasing PO, PO2, HOPO, and
HOPO2 radicals (38) that participated in the catalytic radical
recombination cycle to inhibit the flame:
PO· + H· = HPO·
HPO· + H· = H2O + PO·
PO· + OH· = HPO2·
HPO2· + H· = H2O + PO·
Here, RDP served as an acid agent and promoted the char-
ring process of XG and starch. At approximately 300 °C,
XG and starch underwent further dehydration to produce aro-
matic rings, such as phenol, benzene, and furan structures
with either CH2 or CH2-O-CH2 as main linkages in between
(37). Over 600 °C, carbonization took place as large conju-
gated aromatic structures were formed and were eventually
turned into amorphous carbon structures. The overflow of
H2O and gaseous radicals resulting from RDP decomposi-
tion caused to char layer to possess an intumescent structure.

8 | bioRχiv Pan & Li et al. | S.-T. Yau High School Science Award, Chemistry, 2019



Fig. 7. Pictures and Infrared Pictures of Chicken samples at 0s, 75s, and 150s of the flammability assessment and cross sections of the samples after burning.

Fig. 8. Results for thermogravimetric analysis (shown in the insets are the magnitude of the original curves’ first derivatives). a) TGA curves of 2.5XG gel and
2.5RDP-XG b) TGA curves for 2.5XG/10RDP-Starch and 2.5RDP-XG/10RDP-Starch c) TGA curve for pure starch. d) First derivative of TGA curves of XG-based gel
samples.

Therefore, an even residue char structure was formed on the
surface of the hydrogel, isolating heat radiation from the heat

source and protecting the hydrogel underneath. The presence
of starch reduced the bubbling of RDP when the hydrogel
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Fig. 9. Rheological test results of the hydrogel samples. a) samples with 1 wt.% XG or RDP-XG. b) samples with 2 wt.% XG or RDP-XG. c) samples with 2.5 wt.% XG
or RDP-XG d) all samples e) samples with XG + 10% RDP-starch f) samples with RDP-XG + 10% RDP-starch

was exposed to flame and increased its overall flame retar-
dancy, proving that starch enhanced the trapping effect on
the gases formed during heating.

Discussion of toxicity. Although RDP has been listed as a
flame retardant material with minimal toxicity by the United
States Environmental Protection Agency (US EPA), there are

growing concerns regarding the safety of human exposure to
this material. Recent research reported that RDP may have a
low to moderate toxicity humans, high to very high aquatic
toxicity (Daphnia magna 48-h EC50 = 0.7 mg/L), moder-
ate persistence, and high bioaccumulation potential (39, 40).
However, a study in 2015 shows that when RDP is absorbed
to a substrate like the MMT clay, the toxicity of the RDP
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Fig. 10. FTIR spectra of hydrogel samples. a)pure xanthan gum (XG), pure RDP, RDP-coated XG. b)pure starch, pure RDP, and RDP-coated starch

Fig. 11. Average contact angles of hydrogel samples on sheepskin.

would be greatly reduced (41). In the mentioned study, hu-
man dermal fibroblasts were placed on top of coatings of
RDP/polymer/clay on a glass slip (PS is the abbreviation for
polystyrene). Cells were then cultured and the doubling times
were recorded and compared. As shown in Fig.14, RDP in
fact promotes the proliferation of dermal fibroblasts, and the

doubling time on the coating containing RDP is the same as
that of the plastic control. Therefore, it can be drawn from
the results that absorbed RDP is non-toxic to human dermal
fibroblasts, rendering this study’s hydrogel safe to apply on
human skin.
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Fig. 12. Contact angles of hydrogels on sheepskin of the four best performing samples in burn tests. a)2.5XG/10RDP-starch. b) 2.5RDP-XG/10RDP-starch. c)
2.5XG. d) 2 RDP-XG/10RDP-starch.

mechanism.png

Fig. 13. Illustration of flame-retardant mechanism of RDP-XG/RDP-starch hydrogel

Future work. In order to continue to enhance the perfor-
mance of the anti-burn hydrogel, further research should be
concentrated on 1) optimization on the RDP to starch ratio
and the amount of loading of RDP-starch in gel; 2) Gas chro-

matography–mass spectrometry (GCMS) analysis on gels to
identify volatile products and burning residue; 3) analysis of
the absorption of RDP to human skin and possible irritation;
4) designing a thermal protective performance test for the
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Fig. 14. Growth and doubling time of human dermal fibroblasts on different substrates

hydrogel and compare the result with Stoll curve to deter-
mine the time before causing second-degree burn; 5) analyz-
ing the char residue with FTIR and SEM to determine the
exact mechanism of the flame retardancy

D. Conclusion. In conclusion, this study has shown that a
biodegradable, non-toxic, non-irritating flame retardant hy-
drogel for skin protection can be engineered by blending
starch coated with RDP into xanthan gum-based hydrogel.
The incorporation of starch increased the general thermal sta-
bility of the material, stabilized RDP by preventing its bub-
bling, and rendered RDP nontoxic by fixing its phenyl groups
to a substrate. The formulation 2.5RDP-XG/10RDP-starch
possesses the best performance in regards to hydrogel uni-
formity and flame retardancy. When burned for 150s, the
bottom sheepskin covered with the gel stayed below 48 °C
for 50s and below 55 °C for over 110s. When tested on
chicken skin, the gel formed an even char layer and kept the
skin well-preserved. The bottom final temperature reached
only 55.9°C and the skin-protection time before receiving
second-degree burn reached 45s, outperforming the commer-
cial anti-burn hydrogel by 114%. Characterization results
revealed the hydrogel’s thermal stability, flame retardancy,
shear-thinning and hydrophilic properties, moderate pH, and
non-toxicity, all of which indicated that the anti-burn RDP-
XG/RDP-starch gel was easily spreadable and safe to use as
a protective measure for firefighters worldwide. The novel
concept of employing the principle of intumescent flame re-
tardants for anti-burn hydrogel offers new solutions to the re-
search development in the field of fire safety materials sci-
ence.
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