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Abstract  
Cancer-specific   peptides   produced   by   somatic   mutations   in   tumor   cells   can   be   presented   by  
MHC-I   molecules   on   the   surfaces   of   cells.   The   identification   of   neoantigens   enables  
neoantigen-based   immunotherapies   such   as   personalized   cancer   vaccines.   While   the   current  
approach   is   to   search   for   neoantigens   derived   from   cancer-specific   somatic   variants,   it   often   falls  
short   for   cancers   with   few   somatic   mutations.   One   potential   source   of   neoantigens   is   intron  
retention   in   tumor   cells   as   a   result   of   splicing   errors.   Here   we   identify   retained   intron   candidates  
from   RNA-seq   data,   generate   features   from   Ribo-seq   support,   and   validate   candidates   by   mass  
spectrometry   as   a   step   toward   the   identification   of   neoantigens   from   retained   introns.  
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Background  
The   major   histocompatibility   complex   class   I   (MHC   I)   enables   the   immune   system   to   distinguish  
self   and   non-self   molecules.   The   MHC   I   complex   in   humans   is   encoded   by   the   human   leukocyte  
antigen   (HLA)   genes.   MHC   I   molecules   present   peptides   from   cytosolic   proteins   on   the   surface  
of   cells.   Cytotoxic   T   cells   can   recognize   the   presented   antigens,   and   infected   or   cancerous   cells  
that   present   non-self   antigens   can   elicit   an   immune   response    (Swain,   1983) .   Neoantigens   are  
tumor-specific   antigens   that   result   from   somatic   mutations   in   cancer   cells.   Neoantigens   have  
been   targeted   in   patient-specific   immunotherapies,   in   order   to   treat   patients   with   melanoma   and  
glioblastoma    (Keskin   et   al.,   2019;   Ott   et   al.,   2017;   Sahin   et   al.,   2017) .   Currently,   neoantigens   are  
predicted   from   cancer-specific   somatic   mutations   in   protein-coding   regions   of   the   genome  
(Gubin   et   al.,   2015) .   Yet,   this   approach   falls   short   for   patients   with   low   somatic   mutation   burden  
(Rajasagi   et   al.,   2014) .   
 
Retained   introns   derived   from   splicing   errors   in   cancer   cells   are   another   potential   source   of  
neoantigens.   Neoantigens   predicted   from   the   tumor-specific   retention   and   translation   of   introns  
have   been   computationally   identified   using   RNA-seq   data    (Smart   et   al.,   2018) .   In   order   to  
determine   if   retained   introns   are   bona   fide   sources   of   neoantigens   in   cancer   cells,   the   MHC   I  
complex   can   be   biochemically   isolated   and   MHC   I-bound   peptides   subjected   to   analysis   by   mass  
spectrometry    (Abelin   et   al.,   2017;   Hunt   et   al.,   1992) .   Despite   a   large   number   of   predicted  
retained   introns,   only   a   handful   was   confirmed   by   mass   spectrometry   to   be   presented   by   MHC   I  
in   cancer   cell   lines    (Smart   et   al.,   2018) ,   suggesting   that   there   is   still   much   we   do   not   understand  
about   intron   retention,   translation,   processing,   and   MHC   I   presentation.  

 
Ribosome   profiling   (Ribo-seq)   has   emerged   as   a   powerful   approach   to   investigate   the   translated  
portion   of   the   transcriptome   in   cells   and   tissues    (Ingolia   et   al.,   2009) .   Here,   I   propose   to   use   a  
combination   of   RNA-seq,   Ribo-seq   and   mass   spectrometry   to   determine   the   extent   of   retained  
intron   contribution   to   the   MHC   I   immunopeptidome   in   healthy   and   cancer   cells.   
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Methods   and   Results  
Retained   intron   (RI)   prediction   and   analysis   were   performed   using   RNA-seq,   Ribo-seq,   and   mass  
spectrometry   data   from   B721.221   cells   engineered   to   express   a   single   class   I   HLA-allele  
(HLA-A*01:01,   HLA-A*33:03,   HLA-B*15:01,   HLA-B*44:02).   These   cells   were   used   for   the  
analysis   because   of   the   vast   amount   of   the   MHC   I   immunopeptidome   MS   data   previously  
acquired   from   95   HLA   alleles   individually   expressed   in   these   cells    (Abelin   et   al.,   2017) .   
 
Data   Preprocessing  
RNA-seq   reads   were   trimmed   of   adapter   sequences   and   aligned   to   the   genome.   Adapters   were  
removed   with   Cutadapt   1.15    (Martin,   2011) .   Reads   below   the   chosen   length   threshold   of   80   nt   or  
with   too   many   unknown   nucleotides   were   discarded,   leaving   99.29%   of   the   original   150   million  
read   pairs.   Reads   were   aligned   to   the   genome   with   STAR   2.5.3a,   using   reference   gene  
annotations    (Dobin   et   al.,   2013) .   The   reference   transcriptome   consisted   of   GENCODE   gene  
annotations   as   well   as   transcripts   annotated   in   MiTranscriptome,   which   was   generated   by   de  
novo   transcriptome   assembly   of   RNA-seq   data   from   over   four   thousand   cancer   and   healthy  
samples    (Harrow   et   al.,   2012;   Iyer   et   al.,   2015) .   
 
Ribo-seq   reads   were   trimmed   of   primers,   barcodes,   and   unique   molecular   identifiers   (UMIs)   with  
Cutadapt,   stripped   of   contaminants   such   as   rRNA   with   BowTie    (Langmead   et   al.,   2009) ,   and  
aligned   to   the   genome   with   STAR,   using   reference   annotations   (Figure   1).   Read   alignments   were  
offset-corrected   with   RibORF    (Ji,   2018) .   Offset-correction   is   performed   in   order   to   truncate   each  
read   to   1   nt   and   place   it   at   the   predicted   position   of   the   ribosomal   A-site.  
 

 
Figure   1:   STAR   alignment   summary  
RNA-seq   data   (paired,   150   nt   long   reads)   had   much   higher   rates   of   alignment   and   much   higher   rates   of   unique  
alignment   to   the   genome   compared   to   Ribo-seq   data   (single,   28   nt   long   reads).  
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Retained   Intron   Analysis  
In   order   to   identify   RIs,    de   novo    transcripts   were   assembled   from   aligned   RNA-seq   data   using  
StringTie    (Pertea   et   al.,   2015) .   Transcripts   containing   RIs   were   identified   by   comparing   my    de  
novo    transcripts   to   the   reference   transcriptome   using   GffCompare   (v0.11.2,  
https://ccb.jhu.edu/software/stringtie/gffcompare.shtml ).   RI   candidates   that   were   contained  
within   the   coding   sequence   of   any   annotated   transcript   were   discarded.   
 
The    de   novo    assembly   and   RI   identification   were   performed   on   RNA-seq   data   from   individual  
alleles   and   also   on   RNA-seq   data   combined   across   all   alleles.   A   superset   of   RI   candidates   was  
constructed   from   the   predictions   from   each   allele   and   from   the   combined   alleles   for   further  
processing   (Figure   2).   1801   RI   candidates   were   identified   overall.   
 
Analyzing   alleles   both   individually   and   collectively   preserves   sample-specific   differences   but  
also   captures   overall   trends   to   a   greater   extent.   The   alleles   are   technical   replicates,   and   they   are  
also   biologically   identical   apart   from   their   HLA   alleles.   Combining   alignments   across   alleles  
amplifies   the   presence   of   lowly-expressed   transcripts   and   enables   their   identification   in    de   novo  
transcript   assembly.   These   lowly-expressed   transcripts   are   potential   sources   of   RI   candidates.  
493   RI   candidates   were   predicted   only   in   the   combined   analysis.   The   transcripts   containing   those  
candidates   trended   toward   lower   expression   levels   compared   to   transcripts   containing   RI  
candidates   predicted   in   the   individual   analysis   (Figure   3).   Here,   transcript   expression   levels   are  
quantified   using   TPM   (transcripts   per   million),   which   essentially   measures   the   number   of   reads  
aligning   to   each   transcript   normalized   by   transcript   length   and   total   sequencing   depth.   StringTie  
calculates   the   TPM   for   each   transcript   during   transcript   assembly    (Pertea   et   al.,   2015) .  
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Figure   2:   RI   analysis   schematic,   after   adapter   trimming   and   genome   alignment  
BAM   files   are   generated   after   RNA-seq   reads   are   trimmed   and   aligned   to   the   genome.   Aligned   reads   are   assembled  
into    de   novo    transcripts,   and   RIs   are   identified.   Each   allele   is   processed   individually,   and   RI   candidates   are   also  
predicted   from   RNA-seq   alignments   combined   across   all   alleles.   For   the   superset   of   candidates,   features   are  
generated   from   RNA-seq   and   Ribo-seq   data.   Candidates   are   also   translated   into   proteins   so   that   they   can   be  
searched   in   the   MS   data.  

 
 
 
 
 
 
 
 
Figure   3:    RI   candidates   identified   exclusively   by   the  
combined   analysis   have   lower   expression   than   those  
identified   in   individual   analysis.   The   median   TPM   of   the  
transcripts   containing   candidates   unique   to   the   combined  
analysis   (top)   was   0.41,   whereas   the   median   TPM   of   the  
remaining   transcripts   (bottom)   was   0.77.  
 
 
  

6  



  

Following   MHC-I   immunoprecipitation,   peptides   were   sequenced   with   LC-MS/MS   data   for   all  
alleles.   In   order   to   determine   if   the   RIs   generate   antigens   for   MHC   I   presentation,   I   constructed   a  
database   of   RI   candidates   amenable   to   searching   the   MHC   I   immunopeptidome   mass  
spectrometry   data.   For   the   database,   each   RI   and   its   flanking   45   nt   in   the   neighboring   exons   was  
translated   in   3   frames,   and   potential   open   reading   frames   (ORFs)   that   ended   with   a   stop   codon  
and   were   at   least   8   AA   (amino   acids)   long   were   added   to   the   search   space   (Figure   4).   Reads  
shorter   than   8   AA   were   discarded   because   MHC   I-presented   antigens   are   typically   9-11   AA   or,  
less   frequently,   8   or   12   AA.  
 
Entire   RI   candidates   are   considered   rather   than   just   their   exon-adjacent   regions   due   to   the   diverse  
variations   of   intron   retention   (Figure   5).  
 
To   determine   the   extent   of   the   contribution   of   RIs   to   the   overall   MHC   I   immunopeptidome   MS  
search   space,   I   identified   all   possible   9   amino   acid   long   peptides   that   could   be   generated   from   the  
RI   candidates   as   well   as   from   the   GENCODE   and   MiTranscriptome   references.   Adding   RI  
candidates   to   the   search   space   yields   a   0.94%   increase   in   the   number   of   unique   9-mers   compared  
to   the   GENCODE   and   MiTranscriptome   reference   alone   (Figure   6).  
 

 
Figure   4:   Generating   ORFs   from   a   RI   Candidate  
RI   candidates   and   the   45   nt   on   the   5’   and   3’   flanks   are   translated   in   3   frames.   The   sequence   here   is   arbitrarily  
selected   to   illustrate   the   ORF   identification   process,   and   it   is   shortened   for   clarity.  
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Figure   5:   Intron   Retention   Variations  
Exonic   regions   are   signified   by   thick   blue   lines.   Intronic   regions   are   signified   by   thin   blue   lines,   and   intronic   regions  
that   are   retained   are   signified   by   thick   orange   lines.  
 

 
Figure   6:     The   RI   candidate   peptides   introduce   1,060,670   unique   9-mers   as   potential   presented   peptides.  
 
Figure   7A   presents   an   example   of   an   ORF   within   a   RI   candidate   supported   by   RNA-seq,  
Ribo-seq,   and   MS   data.   The   ORF   is   contained   within   a   RI   candidate   on   the   forward   strand   in   the  
DNAH17-AS1   gene.   It   has   Ribo-seq   support   and   RNA-seq   support,   and   the   peptide  
EHQKEGSRLLL   (highlighted)   has   also   been   found   in   the   mass   spectra.  
 
Given   the   number   of   identified   RI   candidates   and   the   previously   reported   results,   where   few   RIs  
were   validated   by   the   MHC   I   immunopeptidome   MS   analysis,   I   am   planning   to   use   additional  
RNA-seq   and   Ribo-seq   features   to   narrow   down   the   RI   candidates    (Smart   et   al.,   2018)    (Table   1).  
Many   RI   candidates   with   RNA-seq   support   lack   Ribo-seq   alignments   supporting   their  
translation.   The   latter   half   of   gene   CCNT2   is   visualized   in   IGV   in   Figure   7B.   The   exons  
demonstrate   RNA-seq   and   Ribo-seq   support.   The   third   intron   also   demonstrates   RNA-seq  
support,   to   a   smaller   extent,   but   lacks   of   Ribo-seq   support   and   therefore   does   not   appear   to   be  
translated.   The   high   rate   of   such   false   positives   emphasizes   the   need   to   use   Ribo-seq   information  
to   supplement   RNA-seq   data.   Features   generated   from   Ribo-seq   information   may   be   able   to  
better   distinguish   true   positives   from   false   positives   and   increase   the   precision   of   predictions.   

8  

https://paperpile.com/c/LnXkvR/1z10


  

Table   1:   RNA-seq   and   Ribo-seq   features   for   RI   candidates  

Feature   for   each   RI   candidate  Definition/Calculation  Purpose  

RNA-seq   TPM   of   the   candidate’s  
transcript  

StringTie   reports   the   TPM   of   all  
assembled   transcripts.   RI   candidates  
are   mapped   to   StringTie   transcripts,  
and   the   TPM   is   extracted.  

Quantify   candidate’s   transcript  
expression   level  

RNA-seq   TPM  Standard   TPM   formula    (Wagner   et  
al.,   2012)  

Identify   candidate   expression   level  

In-frame   Ribo-seq   TPM  TPM   calculated   from   Ribo-seq   data,  
considering   only   reads   in   the  
translational   frame   for   each  
candidate  

Quantify   amount   of   Ribo-seq   support  
of   the   candidate’s   translation  

Percentage   of   maximum   entropy  
(PME)   of   aligned   RPFs   (ribosome  
protected   fragments)  

Entropy   of   RPF   distribution   out   of  
the   entropy   of   a   uniform   distribution  
(Ji,   2018)  

Evaluate   the   distribution   of   RPF  
alignments   across   a   RI   candidate.  
For   example,   a   concentration   of  
reads   in   a   single   base   (which   would  
have   low   PME)   does   not   provide  
very   strong   evidence   of   translation.  

Mode   RPF   length  Most   frequent   length   of   RPFs  
aligned   to   the   RI   candidate  

Distinguish   Ribo-seq   support  
stemming   from   true   translation  
events   from   RPF   alignments   that   are  
artifacts   of   the   protocol.   True  
ribosomal   footprints   should   be   ~28  
nt.  

 
In   order   to   determine   the   extent   of   intron   contribution   to   the   MHC   I   immunopeptidome,   I   have  
taken   advantage   of   the   vast   MHC   I   immunopeptidome   MS   data   that   has   been   previously  
generated   in   the   lab.   However,   in   order   to   find   cancer-specific   RIs   that   could   be   used   for   targeted  
immunotherapy,   I   have   also   applied   my   pipeline   to   RNA-seq   data   acquired   from   patient-derived  
melanoma   cultures   for   which   MHC   I   immunopeptidome   MS   data   is   also   available.   I   have  
generated   a   patient-specific   RI   database   that   will   be   used   to   search   MS   spectra.   Ultimately,   I   will  
compare   the   RI   candidates   as   well   as   MS-identified   RI   antigens   in   tumor   samples   to   their  
equivalents   in   healthy   samples   in   order   to   find   truly   cancer-specific   RIs.  
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A.  
Gene   DNAH17-AS1  

 
B.  

 
Figure   7:   RI   candidate   ORF   examples   with   RNA-seq   and   RPF   data  
A.   Example   of   RI   candidate   supported   by   RNA-seq,   Ribo-seq,   and   MS   data  
The   ORF   at   chr17:76,481,371-76,481,557(+)   is   shown   in   IGV.   The   ORF   is   within   a   RI   candidate   in   the  
DNAH17-AS1   gene.   The   peptide   EHQKEGSRLLL   (highlighted   in   the   ORF’s   translation   table)   has   been   found   in   the  
mass   spectra.  
B.   Example   of   RI   candidate   that   is   supported   by   RNA-seq   but   does   not   appear   to   be   translated  
The   latter   half   of   gene   CCNT2   is   visualized   in   IGV.   The   third   intron   (highlighted)   appears   to   be   a   false   positive   RI  
candidate   that   is   transcribed   but   not   translated.  
 
 
 
  

10  



  

Discussion  
More   accurate   prediction   of   intron   retention   is   an   important   step   toward   improved   identification  
of   neoantigens   derived   from   intron   retention.   RNA-seq   data   supports   the   prediction   of   almost  
2000   RIs   in   this   data,   but   few   of   them   are   likely   to   be   true   positives.   Considering   Ribo-seq   data  
in   addition   to   RNA-seq   data   when   predicting   RIs   has   the   potential   to   lower   the   false   positive   rate  
by   providing   information   about   the   translation   of   RI   candidates   and   by   distinguishing   translated  
candidates   from   non-translated   candidates.   
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