Tablitute # ** * mytitte m ** * **Physics Challenge Mark-scheme**

TURNITUR WWW. 2019

maximue \$7 # 3 PS

mutute # # *

加化频举等除

multille m # 3

With the ## 'S PS

itute \$5 th 's

Mark-scheme institute

Preamble:

Please award marks as indicated below.

Equivalent valid reasoning should gain equal credit to the solutions presented here.

Error carried forward marks may be awarded where an incorrect answer is used as part of the data needed for a subsequent question, providing that the resulting answer is not plainly ridiculous.

If incorrect units are used more than once then a maximum of one mark should be deducted from the total.

If an inappropriate number of significant figures is given more than once in final answers then a maximum of one mark should be deducted from the total.

Section A – Multiple Choice Questions				1/2 Pho		1/2 Vilo		[1 mark each]		
10.3	於1	2	* 3	4 标	5	6	7	8	9	10
100	А	M sti D ^{inc}	E	Tastill ^{be}	C 🍈	Stilling	B	E	quisti	D

Marks for these two questions should be awarded for a clear explanation of the underlying physical principals using correct scientific terminology.

Answers that are incomplete, contain errors in physics or use terminology incorrectly cannot be awarded 柳林飞 full credit. 柳林海棠

Markers are encouraged to be generous and award credit where possible.

to the life the

No valid attempt made to answer question						
Single valid point presented but other-wise incorrect or incomplete						
Partially correct answer but major error(s) or omission(s) in reasoning						
Mostly correct answer, only minor error(s) or omission(s) in reasoning						
Essentially correct answer, no errors or omissions of reasoning but answer is not clear on first reading, is confused or uses terminology incorrectly						
Completely correct answer, no errors, omissions of reasoning or incorrect use of						
terminology, clear on first reading						
should be awarded credit						
Institute Any Institute Any Institute Any Institute Any						

to the We B.

to the the B

to the the B

to the the 1/3 Ph

to the the the

Physics Challenge Mark-scheme

tinstitute ## #

[5 marks]

[5 marks]

mittel # ** **

Example solutions might include, but are not limited to:

Question 11:

It is not necessary for the student to refer to the photograph. The photograph is provided as a prompt to help students think about how the d.c. electric motor works.

- A current flows in the coil (armature) in the position shown due to the contacts between the brushes and the contact / contact wires (commutator).
- The current flowing along the long sides of the armature are perpendicular to the magnetic field due to the permanent magnets.
 - As described by Fleming's Left Hand Rule (or any equivalent statement) each side of the armature will experience a force due to the current flowing in the magnetic field.
 - The force on one side of the coil/armature will be upwards and the force on the other side will be down and therefore a turning effect is produced, the armature spins.
- When the brushes disconnect from the contacts on the commutator, the inertia of the armature keeps it rotating until electrical contact is re-established.
 - The armature is now connected "the other way round" electrically so that the forces on the armature are in the same direction as before.
 - The armature receives another turning force or kick and continues to spin.
 - Note: an annotated diagram is not necessary. For full marks both the origin of the turning force and the action of the commutator must be considered.

Question 12:

- \circ $\;$ The weight of the 1 kg mass is 10 N.
- When the balance is stationary it is not accelerating and so the resultant force on the mass is 0 N. The weight is balanced by the upwards tension in the spring. The tension in the spring causes it to extend and the reading is 10 N.
 After the student has leapt off the table but not landed caute for the formula of the student has leapt off the table but not landed caute formula formula.
 - After the student has leapt off the table but not landed on the floor, the mass is in free fall. The mass is accelerating at 10 m/s² and so the resultant force acting on the mass is 10 N. The 10 N resultant force is due to the weight of the object. No force is provided by the spring balance, since it is also accelerating downwards at 10 m/s², at the same rate as the student, so the spring is not extended. The reading on the scale is 0 N.
 - When the student lands the mass must decelerate and so a resultant force is required in the upwards direction. To make this upwards resultant force the force from the spring balance must be greater than the weight. As the upwards force due to the tension in the spring is > 10 N, the spring is extended beyond the 10 N mark.

 Must address all three situations for full credit. Partial credit (4/5) can be gained for a clear explanation of just one of the three situations.

Section C – Longer Answer Questions

** 资本

13 (a)Drawing with Sun, Earth and Moon in the right order in a line[1]Explanation that the plane of the Moon's orbit and the plane of the Earth's orbit are not the same
and so the Moon does not usually pass directly behind the Earth[1]

Institute	探水 伤	mistille to the second	stitute # 3 .	matilite # 3 .	Institute the to s	tinstitute #		instit
	Physics	Challenge Mark-scheme		2019		Page 3	of 3	
tinstitute	13 (b)	Use of two correct positio Calculation of time interva Use of speed = 9200 km / Do not allow answers that	ns – either B&D al as 2 hours 9 m 2.15 hours to giv : make use of me	or C&E inutes, correct conve re speed = 4280 km h asurements from th	ersion (do not allow n ⁻¹ ne diagram	2.09 hrs)	[1] [1] [1]	
	13 (c)	Use of two correct positio Calculation of time interva	ns – either B&C o al and size. Size =	or D&E (not measure 4280 kmh ⁻¹ x 1.12 h	ements from diagram nours = 4780 km	m)	[1] [2]	
G THISTITUTE	13 (d)	Distance travelled = 4280 Distance travelled = $2\pi R$ Earth – Moon distance = 4	kmh ⁻¹ x (27.3 x 2 46,000 km	4) hours = 2.8 x 10 ⁶	km	a masitute #	[1] [1] [1]	msti
	13 (e)	Realistic estimate of size of Calculation of ratios of size Valid comment to justify of	of thumb and eye e to distance or a or not the claim i	e – thumb distance angular size for thum n the question	nb and Moon	No.	[1] [1] [2] ₁₂ %	
Institute	w ** *	E.g: Thumb ≈ 2 cm diamet an angular size for the thu distance is 4780:44600 ≈ 1 is not valid, the thumb wo	er and eye – thu mb of about 2°). L:90 (and an ang ould more than co	mb distance ≈ 60 cm Ratio of calculated ular size for the Moc over the Moon.	n therefore ratio is a Moon diameter to E on of about 0.6°). Th	bout 1:30 (giv arth – Moon erefore the c	ving aim	insti
C mastitute	14 (a)	Use of p = F / A and correct giving p = 13 / $(\pi \times 0.02^2)$ =	ct units = 10,300 Pa	multilite # # B P	Constitute the the 'S'	R MANIMUR	[1] [1]	finst
	14 (b)	pressure = atmospheric –	14 (a) therefore	p = 101,000 – 10,300	0 = 90,700 Pa		[2]	
institute	14 (c)	Use of $\Delta p = 10,300$ Pa and Therefore $\Delta p/\Delta T = 245$ Pa Pressure falls from 101,00 Giving absolute zero = 80 Alternatively pressure falls and a value for absolute zero	ΔT = (80 – 38) = /°C 0 Pa giving a cha – 412 = -332 °C s from 90,700 Pa ero of 38 – 370 =	42 °C nge in temperature giving a change in t -332 °C	of 101,000 / 245 = 4 emperature of 90,70	412 °C 00 / 245 = 370	[1] [1] [1] [1] [1] D°C	insti
tinstitute	14 (d) 14 (e)	Assumption: the relations Accept: Volume or amoun The volume of the contain Because the volume does and therefore has no effect	hip between tem t of gas don't ch her makes no diff n't change during ct on the change	perature and press ange erence to the tempe g the experiment in pressure as the ja	ure is linear or p/T = erature (the lid hardly mov ar cools (owtte)	constant ves in at all)	[1] [1] [1] [1]	insti
tinstitute	14 (f)	The values for diameter of wrong as they are more st Either the force measured at which the lid popped w Because $\Delta p / \Delta T$ was too s	f the lid, atmospl raight forward to to depress the l as measured as t mall so either Δp	neric pressure and ir o measure. id was too small OR coo low – the air was o was too small or Δ ⁻	nitial temperature an the temperature of s still warmer than 3 T was too high	re unlikely to the air in the .8 °C	be jar [1] [2]	inst
tinstitute	W. K.	But be generous and allow explanation must explain the	v any valid reaso why the calculate	n for any of the mea ed value of absolute	asured quantities. Fo zero was too low, n	or full marks t ot just incorr	he ect. _K %	msti

西林诸院

Y.

Y.

K

R.

K

K

Y.

R

N.
