
BMT 2015 DISCRETE ROUND SOLUTIONS 7 March 2015

1. Alice is planning a trip from the Bay Area to one of 5 possible destinations (each of which
is serviced by only 1 airport) and wants to book two flights, one to her destination and one
returning. There are 3 airports within the Bay Area from which she may leave and to which
she may return. In how many ways may she plan her flight itinerary?

Solution. Alice has 3 ways of choosing a departing airport, 5 ways of choosing a location
from there, and 3 ways to choose a returning airport, giving us 3 · 5 · 3 = 45 possible flight
itineraries.

2. Determine the largest integer n such that 2n divides the decimal representation given by some
permutation of the digits 2, 0, 1, and 5. (For example, 21 divides 2150. It may start with 0.)

Solution. The largest integer we can generate with such permutations is 5210, so clearly
n <= 11. We see that 2048 · 2 = 4096 and thus n = 11 is not possible. However, 210 divides
5120, so we have n = 10.

3. How many rational solutions are there to 5x2 + 2y2 = 1?

Solution. Note that this is equal to the number of minimal solutions to 5x2+2y2 = z2, where
x, y, z are integers. Taking this equation mod 5, we get that 2y2 = z2. But 2 is a quadratic
nonresidue modulo 5, so there are no solutions.

4. Determine the greatest integer N such that N is a divisor of n13 − n for all integers n.

Solution. Using Fermat’s Little Theorem, we see that n13 ≡ n mod 2,3,5,7, and 13. Thus
2730 = 2 · 3 · 5 · 7 · 13 divides N . Meanwhile, 213 − 2 = 3 · 2730. Since 313 − 3 is not divisible
by 9, we must have N = 2730.

5. Three balloon vendors each offer two types of balloons − one offers red & blue, one offers
blue & yellow, and one offers yellow & red. I like each vendor the same, so I must buy 7
balloons from each. How many different possible triples (x, y, z) are there such that I could
buy x blue, y yellow, and z red balloons?

Solution. First, we note that (x, y, z) is an ordered partition of 21. By stars and bars, there

are

(
23

2

)
= 253 of those. However, since each color is not sold by one of the vendors, we

must have x, y, z ≤ 14. Now, there are

(
8

2

)
= 28 partitions where x ≥ 15. Since no two

of x, y, z can simultaneously be ≥ 15, we have 253 − 3 · 28 = 169 partitions where no part is
greater than 14.

Now, we claim that all of these remaining partitions are indeed possible. Suppose we have
(x, y, z) satisfying the conditions. Without loss of generality, assume that x ≤ 7 (by pigeon-
hole) and that y is the largest of the three. Then, buy 7 yellow balloons from the blue and
yellow vendor, and x blue balloons from the blue and red vendor. Then, buy 7−x red balloons
from the blue and red vendor - this is possible because otherwise z + x ≤ 7, and so y > 14
which contradicts our assumption. Finally, we buy the remainder of the balloons from the
yellow and red vendor. This gives us a valid way to buy balloons satisfying (x, y, z), and thus
we have 169 feasible possibilities of balloon buying.

6. There are 30 cities in the empire of Euleria. Every week, Martingale City runs a very well-
known lottery. 900 visitors decide to take a trip around the empire, visiting a different city
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each week in some random order. 3 of these cities are inhabited by mathematicians, who will
talk to all visitors about the laws of statistics. A visitor with this knowledge has probability 0
of buying a lottery ticket, else they have probability 0.5 of buying one. What is the expected
number of visitors who will play the Martingale Lottery?

Solution. Consider a random visitor Eve. Eve’s trip is a permutation of the 30 cities, and
since she visits them in a random order, each possible permutation is equally likely. Restricting
out focus to the ordering of Martingale City and the three mathematician cities, we see that

Eve has a
1

4
chance of visiting Martingale City before the other three. In this case, she has

a
1

2
chance of buying a lottery ticket; in the other cases, she has probability 0 of buying one.

Thus, Eve has a
1

8
chance in total of buying a lottery ticket.

This holds independently for all 900 visitors, giving us an expected value of
225

2
lottery tickets

sold.

7. At Durant University, an A grade corresponds to raw scores between 90 and 100, and a B
grade corresponds to raw scores between 80 and 90. Travis has 3 equally weighted exams in
his math class. Given that Travis earned an A on his first exam and a B on his second (but
doesn’t know his raw score for either), what is the minimum score he needs to have a 90%
chance of getting an A in the class? Note that scores on exams do not necessarily have to be
integers.

Solution. The probability distribution of Travis’s average score after the first two exams is
as follows:

where the area underneath the graph must be 1. Thus, the height of the triangle is
1

5
. To

find the 10th percentile of this graph, we look for a value x for which the area it encloses is
1

10
, i.e. x · x

25
· 1

2
=

1

10
. This gives us x =

√
5. Travis will then get an A in the class if

2(85 +
√

5) + n

3
≥ 90, or 170 + 2

√
5 + x ≥ 270. This gives x ≥ 100− 2

√
5.

8. Two players play a game with a pile with N coins is on a table. On a player’s turn, if there
are n coins, the player can take at most n/2 + 1 coins, and must take at least one coin. The
player who grabs the last coin wins. For how many values of N between 1 and 100 (inclusive)
does the first player have a winning strategy?

Solution. We claim that the second player can only win when N = 3(2k − 1), k ≥ 1. To
show this, we use induction. First, we see easily that player 1 wins when N = 1 and N = 2
by grabbing all the coins, but they cannot win when N = 3. Now, suppose we have found the
winning strategy for all k < N . Let n = 3(2m−1) be the largest such number that is less than
N . Then if N − (N/2 + 1) <= n, the first player can take away enough coins so that there
are n left on the table, and then they will win. But the statement N − (N/2 + 1) <= n is
equivalent to N/2−1 ≤ n, which means N ≤ 2(3(2m−1)+1) = 2(3·2m−2) = 3(2m+1−1)−1.
Thus the next value of N for which the second player can win is N = 3(2m+1−1), completing
the induction. Thus, the first player has a winning strategy for 95 values between 1 and 100.
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9. There exists a unique pair of positive integers k, n such that k is divisible by 6, and
k∑

i=1

i2 = n2.

Find (k, n).

Solution. The sum evaluates to
k(k + 1)(2k + 1)

6
. Since k, k+1, 2k+1 are pairwise relatively

prime, so are the integers
k

6
, k + 1, 2k + 1, and since their product is a perfect square, each

itself is a perfect square. Since k = (2k + 1) − (k + 1), and k + 1 and 2k + 1 have the same
parity, k is either odd or divisible by 4. But we are given that k is divisible by 6, so k is
not odd and is thus divisible by 4. Since it’s divisible by both 4 and 6, it’s divisible by 12, so
say k = 12m′. Then k/6 = 2m′ is a perfect square, so m is even, and k is in fact divisible
by 24. So we have k = 24m, and all of 4m, 24m + 1, 48m + 1 are perfect squares. If we
make the obvious choice of m = 1, we get 4, 25, 49, all of which are perfect squares, and so
k = 4 · 6 = 24, and n2 = 4 · 25 · 49, and so n = 2 · 5 · 7 = 70. Thus, the answer is (24, 70).

10. A partition of a positive integer n is a summing n1 + ... + nk = n, where n1 ≥ n2 ≥ ... ≥ nk.
Call a partition perfect if every m ≤ n can be represented uniquely as a sum of some subset
of the ni’s. How many perfect partitions are there of n = 307?

Solution. We claim that the number of partitions of n is equivalent to the number of ordered
factorizations of n + 1. Note that since 1 needs to be represented, nk = 1. Suppose we
have k1 1’s in our partition. Then k1 + 1 must be the next largest number in the partition.
Similarly, the next largest must be (k1 + 1)(k2 + 1), where we have k2 repetitions of k1 + 1.
This continues, until we have ki repetitions of each (k1 + 1)...(ki−1 + 1) for all i from 1 to
a for some a. Lastly, we have k1 · 1 + k2(k1 + 1) + ... + ka(k1 + 1)...(ka−1 + 1) = n, which
simplifies to (k1 + 1)...(ka + 1) = n + 1. Thus, the number of choices we have for k1, ..., ka
is equal to the number of ordered factorings of n + 1. For n = 307, we have 308 = 2 · 3 · 53,
which gives us 13 possible ordered factorings.

P1. Find two disjoint sets N1 and N2 with N1 ∪N2 = N, so that neither set contains an infinite
arithmetic progression.

Solution. One possible answer is to give N1 = {1} ∪ {4, 5, 6} ∪ {11, 12, 13, 14, 15} ∪ ... and
N2 = {2, 3} ∪ {7, 8, 9, 10} ∪ ...
It is clear here that we cannot have an arithmetic progression in either set, because both of
them contain arbitrarily large intervals with no elements of the set in them.

• 2 points for writing a correct distribution into 2 sets

• 4 points for correct justification

P2. Suppose k > 3 is a divisor of 2p + 1, where p is prime. Prove that k ≥ 2p + 1.

Solution. WLG assume k is prime. We have 2p + 1 ≡ 0 mod k, and thus 2p ≡ −1 mod k.
This means 22p ≡ 1 mod k, and we see that 2p is the order of 2 mod k. Now, 2k−1 ≡ 1 by
FLT. so 2p|k − 1 and so k ≥ 2P + 1.

• 1 point for looking at the problem modulo k

• 1 point for mentioning 2k−1 ≡ 1 by FLT

• 2 points for proving 2p is the order of 2 mod k

• 2 pts for full solution
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