

- 1. Let x, y, z, w be integers such that $2^x + 2^y + 2^z + 2^w = 24.375$. Find the value of xyzw.
- 2. Let $g(x) = 1 + 2x + 3x^2 + 4x^3 + \dots$ Find the coefficient of x^{2015} of $f(x) = \frac{g(x)}{1-x}$.
- 3. Find all integer solutions to

$$x^{2} + 2y^{2} + 3z^{2} = 36,$$

$$3x^{2} + 2y^{2} + z^{2} = 84,$$

$$xy + xz + yz = -7.$$

4. Let $\{a_n\}$ be a sequence of real numbers with $a_1 = -1, a_2 = 2$ and for all $n \ge 3$,

$$a_{n+1} - a_n - a_{n+2} = 0.$$

Find $a_1 + a_2 + a_3 + \ldots + a_{2015}$.

- 5. Let x and y be real numbers satisfying the equation $x^2 4x + y^2 + 3 = 0$. If the maximum and minimum values of $x^2 + y^2$ are M and m respectively, compute the numerical value of M m.
- 6. The roots of the equation $x^5 180x^4 + Ax^3 + Bx^2 + Cx + D = 0$ are in geometric progression. The sum of their reciprocals is 20. Compute |D|.

7. Evaluate
$$\sum_{k=0}^{37} (-1)^k \binom{75}{2k}$$

8. Let ω be a primitive 7th root of unity. Find

$$\prod_{k=0}^{6} (1 + \omega^k - \omega^{2k})$$

(A complex number is a primitive root of unity if and only if it can be written in the form $e^{2k\pi i/n}$, where k is relatively prime to n.)

9. Find

$$\lim_{n \to \infty} \frac{1}{n^3} \left(\sqrt{n^2 - 1} + \sqrt{n^2 - 2^2} + \ldots + \sqrt{n^2 - (n - 1)^2} \right).$$

10. Evaluate

$$\int_0^{\pi/2} \ln\left(4\sin x\right) \, dx.$$

- **P1.** Suppose $z_0, z_1, \ldots, z_{n-1}$ are complex numbers such that $z_k = e^{2k\pi i/n}$ for $k = 0, 1, 2, \ldots, n-1$. Prove that for any complex number $z, \sum_{k=0}^{n-1} |z - z_k| \ge n$.
- **P2.** Let f(x) be a nonconstant monic polynomial of degree n with rational coefficients that is irreducible, meaning it cannot be factored into two nonconstant rational polynomials. Find and prove a formula for the number of monic complex polynomials that divide f.