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Introduction

In this round, we will be explicitly focused on analyzing a function known as the arithmetic
derivative. While the name is rooted in calculus, this function is purely a number theoretic
phenomena. Nevertheless, it shares some interesting mathematical characteristics with its calculus
counterpart. In this round, we will be looking at the function definition, examine bounds on the
function, and use the function definition to solve arithmetic differential equations. The arithmetic
derivative has also been shown to give insight into abstract number theory problems.

Definition. The Arithmetic Derivative, D : Z+ → Z+ is defined as follows:

• D(0) = 0

• D(p) = 1 if p is prime

• Product Rule: If n = ab for a, b ∈ N, then D(n) = aD(b) + bD(a).

Example. For example, if we wanted to calculate the arithmetic derivative of 10, we would see
that 10 = 5 · 2. So D(10) = 5D(2) + 2D(5) which is 5 · 1 + 2 · 1 = 7.

Since this function deals with primes, let’s start our analysis of this function by looking at prime
powers.

A Note on Proofs

Many of these proofs require the use of induction, a proof technique that is very common in number
theory. To prove a statement P that depends on a variable n in the natural numbers (i.e 1, 2, 3 ...)
is true using induction, first prove that P is true for 1. Then show that if P is true for a natural
number k, then P is true for the natural number k − 1. An example is illustrated below.

Example. Prove that
∑n

i=1 2 · i − 1 = n2. In other words show that the sum of the first n odd
numbers is n2.

Proof. We proceed using induction. Our statement P (n) is “the sum of the first n odd numbers is
n2” First we will prove the base case or P (1). In effect this means we need to show that the sum
of the first odd number is 12, which is clearly true since 1 = 1.

Now, we will show that if the statement “the sum of the first n odd numbers is n2” is true for
n = k, then it is true for n = k + 1. So we assume that the sum of the first k odd numbers is k2.
So we have

∑k
i=1 2 · i−1 = k2. Adding the k+ 1st odd number or 2(k+ 1)−1 = 2k+ 1 to the sum,

we see that
∑k+1

i=0 2 · i− 1 = k2 + 2k + 1 = (k + 1)2. Note that this is exactly in the same thing as
saying “the sum of the first k + 1 odd numbers is (k + 1)2, so we have shown that P (k + 1) is true
given P (k) is true.

Therefore, since we have shown that P (1) is true and that P (k) implies P (k+1), we have shown
that the statement P is true on the natural numbers.

1. [2 pts] Prove that
∑n

i=1 i
2 = n(2n+1)(n+1)

6 .

Solution to Problem 1:

We proceed with induction. Our base case is that the sum of 12 = 1·2·3
6 = 1, so we are

done. We will now proceed with our induction step. Assume that for n = k,
∑k

i=1 i
2 =

1
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k(2k+1)(k+1)
6 . Adding (k + 1)2 to both sides, we have

∑k+1
i=1 i2 = k(2k+1)(k+1)

6 + (k + 1)2 =
k(2k+1)(k+1)+6(k+1)2

6 = (k(2k+1)+6(k+1))(k+1)
6 = (2k2+7k+6)(k+1)2

6 = (k+2)(2k+3)(k+1)2

6 = (k+1)((k+1)+1)(2(k+1)+1)
6

which is exactly what we wanted to prove.

The Arithmetic Derivative on Prime Powers

2. [1 pt each] Find the arithmetic derivative of the following prime powers. You must show
your work.

(a) 53

(b) 115

(c) Find and prove a formula for the arithmetic derivative of p4 for any prime p.

Solution to Problem 2:

(a) D(53) = 5D(52) + 52D(5) = 5(5D(5) + 5D(5)) + 52D(5) = 5(10) + 25(1) = 75

(b) We first calculate D(11), D(112) and D(113). D(11) = 1. D(112) = 11 · D(11) +
11 · D(11) = 22. Finally, D(113) = 112D(11) + 11D(112) = 121 + 242 = 363. Now
D(115) = 113D(112) + 112D(113) = 1331 · 22 + 121 · 363 = 73205 .

(c) We will show that D(p4) = 4p3. D(p4) = p2D(p2) + p2D(p2) = 2p2D(p2). Now,

D(p2) = pD(p) + pD(p) = 2pD(p). So, D(p4) = 2p2 · 2p ·D(p) = 4p3 .

In general, we can express the arithmetic derivative of prime powers using what is known as
the power rule.

Theorem. Suppose natural number n = pk for some prime p and nonnegative integer k. Then,
D(pk) = kpk−1.

3. Let’s try to prove the above theorem true.

(a) [1 pt ] Show that D(1) = 0.

(b) [4 pts ] Prove the above theorem. Hint: Use induction.

Solution to Problem 3:

(a) We see that D(p) = 1. But we also know that D(p) = 1 · D(p) + p · D(1) So, D(p) =
D(p) + p ·D(1) which implies that D(1) = 0.

(b) We will proceed with induction on k. Our base case is k = 0, which occurs when we
wish to calculate D(pk) = D(p0) = D(1). The previous part already showed us that
D(1) = 0, and 0 = 0 · p−1 for any prime, so we are done.

Now, we assume that for k = j − 1, that D(pj−1) = j − 1pj−2. We will show that given
this assumption, the case k = j holds. We know that D(pj) = p ·D(pj−1)+pj−1 ·D(p) =
p · (j − 1)pj−2 + pj−1. This is ((j − 1) + 1)pj−1 = jpj−1, which is what we wanted.
Therefore, the theorem is true.

2
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The Arithmetic Derivative On All Integers

4. Let us compute the arithmetic derivative on general numbers.

(a) [1 pt] Compute D(899)

(b) [1 pt] Compute D(36)

(c) [1 pt] We saw that the power rule states that D(pk) = kpk−1 if p is a prime. Give a
counter-example to show that this does not hold for a general n. In other words show
that D(nk) = knk−1 does not hold.

Solution to Problem 4:

(a) D(899) = D(29 · 31) = 29D(31) + 31D(29) = 60.

(b) D(36) = 4D(9) + 9D(4) = 4(2 · 3) + 9(4) = 24 + 36 = 60.

(c) We see that D(36) = 60 which is not 2 · 6 = 12, so that is a valid counterexample.

5. [6 pts] Let n = pe11 pe22 ...pekk be the prime factorization of n. Prove that D(n) = n
∑k

i=1
ei
pi

.

Solution to Problem 5:

We can write n =
∏i=t

i=1 pi for primes pi that are not necessarily distinct. This is essentially
expanding the prime factorization out to individual prime terms. Now, the theorem simplifies
to proving that D(n) = n

∑t
i=1

1
pi

. We will prove this theorem by induction on the number
of primes t.

Our base case is t = 0, in which case n is the empty product which is 1. Therefore, we want
to show that D(n) =

∑t
i=1

1
pi

. Since t = 0, this is simply the empty sum which is also 0. We

have previously shown that 1′ = 0 so we are done.

The induction step is when i = k− 1 for some k, so n =
∏i=k−1

i=1 pi. Then, D(n) = n
∑k−1

i=1
1
pi

.

Now we consider npk. We see that D(npk) = D(n)pk + nD(pk) = npk
∑k−1

i=1
1
pi

+ n =

npk(
∑k−1

i=1
1
pi

+ 1
pk

) = npk(
∑k

i=1
1
pi

) and we are done.

6. Now that we have proved a general formula, let’s go back and reexamine the power rule.

(a) [1 pt] Compute D(720)

(b) [1 pt] Compute D(123)

(c) [1 pt] Compute D(145). (Hint : 144 = 38416).

(d) [3 pts] Find and prove a formula for D(nk) in terms of D(n), n, and k.

Solution to Problem 6:

(a) The prime factorization of 720 is 32 ∗24 ∗5. So our summation turns out to be 720 · (23 +
4
2 + 15) = 720 · 4315 = 2064 .

(b) We see 123 = 26 · 33. So our formula states that this is 123 · (62 + 3
3) = 123 · 4 = 6912.

(c) We see that 145 = 75 · 25. So we have 145 · (52 + 5
7) = 145 · 4514 = 144 · 45 = 38416 · 45 =

1728720 .

(d) We will show that D(nk) = knk−1D(n). First, let n = pet1 ...p
et
n where p1p2...pt are distinct

primes. Then nk = pket1 ...pketn by exponent rules. Therefore D(nk) = nk ·
∑t

i=1
ket
pt

=

knk ·
∑t

i=1
et
pt

= knk−1(n
∑t

i=1
et
pt

) = knk−1D(n).

3
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Remark. You may notice some striking similarities to the chain rule in calculus. That is
d
dxf(x)k = kf(x)k−1 · dfdx .

7. The Goldbach Conjecture is a famous conjecture in mathematics that states that for any
even integer 2k > 2 , there exists two primes p, q such that p + q = 2k.

[4 pt] Consider the equation D(n) = 2k. Show that if there exists a k ∈ N, greater than 1
such that D(n) 6= 2k, for all n ∈ N, then the Goldbach Conjecture is false.

Solution to Problem 7: We consider the contrapositive of the statement. That is we will
show that if the Goldbach Conjecture is true, then there exists a solution for D(n) = 2k. If
the Goldbach Conjecture is true, then there exists p, q such that p + q = 2k. Consider now
n = pq. Taking the arithmetic derivative, we see that D(n) = pD(q) + qD(p). Since p, q are
prime, this is simply p + q. So, if the Goldbach Conjecture is true, then we can construct an
n such that D(n) = 2k for any k.

4
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Higher Order Arithmetic Derivatives

We have explored the notion of the arithmetic derivative. Now, let us see what happens as we
iterate this function.

Definition. Define the kth order derivative, D(k)(n) of a natural number n as:{
D(n) if k = 1.

D(D(k−1)(n)) if k > 1

Example. As an example, we will compute D(3)(21).
We see that D(3)(21) = D(D(D(21))). D(21) = 21 · (17 + 1

3) = 10. D(10) = 10(15 + 1
2) = 7.

Finally since 7 is prime, D(7) = 1, and we are done.

8. Compute the following arithmetic derivatives.

(a) [1 pt] D(2)(34)

(b) [1 pt] D(3)(49)

(c) [1 pt] D(4)(3125)

(d) [1 pt] D(4)(64)

Solution to Problem 8:

(a) D(D(34)) = D(17 ·D(2) + D(17) ·D(2)) = D(17 + 2) = D(19) = 1 .

(b) First, D(49) = D(72) = 2 · 7 = 14, by our proof of prime powers. Then D(14) =
D(2 ·D(7) + 7 ·D(2)) = D(9) = 6 .

(c) We see that 3125 = 55 D(55) = 5 ·D(54) = 55. So D(n)(55) = 55 = 3125 .

(d) D(64) = D(26) = 6 · 25 = 3 · 26. D(3 · 26) = 3 · D(26) + 26 · D(3) = 9 · 26 + 26) =
10 · 26.D(10 · 26) = D(10) · 26 + 10 ·D(26) = 7 · 26 + 30 · 26 = 37 · 26. Finally, D(37 · 26) =
37 ·D(26) + 26 ·D(37) = 112 · 26 = 7168.

9. In this problem, we examine the case in which D(n) = n. This is known as an arithmetic
differential equation.

(a) [2 pt] Show that if n = pp for a prime p, then D(n) = n.

(b) [5 pts] Prove that the numbers n = pp for any prime p are the only solutions to D(n) = n.

Solution to Problem 9:

(a) By our prime powers formula, we have D(pp) = p · pp−1 = pp and we are done.

(b) Suppose D(n) = n. Then, if pe11 pe22 ...pekk is the prime factorization of n, by our summation

formula, n ·
∑k

i=1
ei
pi

= n. This implies that
∑k

i=1
ei
pi

= 1. Multiplying by
∏k

i=1 pi, we

have
∏k

i=1 pi =
∑k

i=1
ei
pi

∏k
i=1 pi. Bringing, all but the first term to the left hand side,

we have
∏k

i=1 pi(1 −
∑k

i=2
ei
pi

) =
∏k

i=2 piei. The left hand side divides p1, so therefore
both sides must as well. Since p2...pk are relatively prime to p1, ei = gp1 for some g ≥ 1.
So we know that

∑k
i=2

ei
pi

+ g = 1. Since g ≥ 1 and all terms in the summation are

nonnegative, we see that g = 1 and
∑k

i=2
ei
pi

= 0, implying that n = pp11 , proving the
desired statement.

5
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Sequences of Higher Order Derivatives

Let us now look at sequence of derivatives. That is, we will consider the sequence of the higher
order derivatives of n as ∆(n). Specifically, we will define (∆(n))k as the sequence

D(1)(n), D(2)(n), D(3)(n), D(4)(n) . . .

where the kth term in the sequence is D(k)(n).

Definition. Sequences like these can either be increasing, decreasing, or neither. We call a sequence
(s)n increasing if sn+1 ≥ sn for all n ∈ N. A sequence is decreasing if sn+1 ≤ sn for all n ∈ N.

10. (a) [1 pt] Is the sequence, (∆(12)), increasing, decreasing, or neither? You do not need to
justify your answer.

(b) [1 pt] Is the sequence, (∆(14)), increasing, decreasing, or neither? You do not need to
justify your answer.

(c) [2 pts] Find an example of a number such that (∆(n)) is neither increasing nor decreas-
ing. You must prove your answer.

(d) [2 pts] For which k is the sequence (∆(2k)), increasing? Your answer should be a
condition on k. You must prove your answer.

Solution to Problem 10:

(a) The sequence is increasing.

(b) The sequence is decreasing.

(c) Starting with 15, we see that D(15) = 8. And D(8) = 12. So we see that (∆(15))
decreases, and then increases, so it it is neither increasing nor decreasing.

(d) We will show that (∆(2k)) is increasing if k ≥ 2. Consider a = c · 22 Then, D(a) =
D(c) ·22 +D(22) · c. Setting D(c) + c = g, we see that D(a) = g ·22 ≥ c ·2k. Considering
the sequence ∆(2k), the first term s1 and all subsequent terms sn can be written as
c · 22. As a result, each term sn+1 ≥ sn for all n and we are done. Now, if k = 1, we
already see that D(2) = 1 so it is not increasing. Now, if k = 0, then D(1) = 0, so
the sequence simply becomes all 0’s, which is increasing as defined by our defintiion.
Therefore, the set S = {k if ∆(2k) is increasing} is k ≥ 2 and k = 0. Note: During the
Power Round, we did not intend for k = 0 to be a solution, so as long as k ≥ 2, the
answer was accepted.

11. [3 pts] Show that if n = k · pp for some natural number k > 1 and prime p, then (∆(n)) is
strictly increasing, meaning sn+1 > sn for all n.

Solution to Problem 11:

Consider a = k · pp Then, D(a) = D(k) · pp +D(pp) · k = (D(k) + k)pp. Setting D(k) + k = g,
we see that D(a) = g · pp > k · pp, since k > 1. Considering the sequence ∆(k · pp), the
first term s1 and all subsequent terms sn can be written as kn · pp for some sequence (kn).
Therefore, each term sn+1 > sn for all n and we are done.

12. [7 pts] Suppose (∆(n)) is such that it alternates between two distinct numbers m and n.
Show that gcd(n,m) = 1 and neither m nor n are divisible by a square number other than 1.

Solution to Problem 12:

6
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If (∆(n)) consists alternates between two numbers m and n, then this implies that D(n) = m
and D(m) = n, with m 6= n. First neither m or n, are divisible by pp for any prime p, since
we already showed that such a sequence is strictly increasing in the last problem, so it cannot
alternate.

Lemma. Let pk be the highest power of p that divides n such that 0 < k < p. Then pk−1

divides is the largest power of p that divides D(n).

Proof. Let n = pk ·m for some m. Then, D(n) = kpk−1m + D(m)pk = pk−1(km + D(m)p).
Since k < p and gcd(m, p) = 1, we see that km does not divide p so the expression km+D(m)p
does not divide p, so pk−1 is the largest power of p that divides D(n).

Let gcd(n,m) = d. Let p be the smallest prime p that divides d and k be the largest
prime power of p such that pk divides m. Then, k < p since otherwise pp|m which implies
that pp|m,n which is not possible. So, therefore D(D(m)) = m has the highest power
pk−2 a contradiction since k is the highest power of p such that pk divides m. As a result,
gcd(n,m) = 1.

Now, if m is divisible by a square s2. Then, let q be the smallest prime factor of s. Then q2|m.
Clearly, q cannot be 2 since otherwise m is divisible by pp, so 2 < q. By the above lemma,
D(m) = n has q as a factor, but then gcd(m,n) ≥ q, a contradiction. So m is square-free.
Since m and n are symmetric, since the kth term of (∆(n)) is the k + 1st term of (∆(m)) we
see that n is also square-free, or not divisible by a square number other than 1.

Bounds on the Arithmetic Derivative

Let’s try to understand what bounds the arithmetic derivative.

13. [4 pts] Let p∗ be the smallest prime factor of n. Show that D(n) ≤ n logp∗ (n)

p∗ .

Solution to Problem 13: Let n = p1p2...pk for pi ≥ p∗ where the pi’s are not necessarily
distinct. By our summation formula, D(n) = n

∑k
i=1

1
pi
≤ n

∑k
i=1

1
p∗ = nk

p∗ . Since n =

p1p2...pk ≥ (p∗)k, we see that k ≤ logp∗(n) so D(n) ≤ nk
p∗ ≤

n logp∗ (n)

p∗ .

14. [4 pts] Let k be the sum of all the exponent values in the prime factorization of n. Show

that D(n) ≥ k · n1− 1
k

Solution to Problem 14:

We see that n = p1...pk where pi’s are not necessarily distinct. So we have D(n)
n =

∑k
i=1

1
qi

.

By the AM −GM inequality,
∑k

i=1
1
qi
≥ k · (

∏k
i=1

1
qi

)
1
k ) = kn

−1
k . So D(n) ≥ kn1− 1

k .

15. [6 pts] Let k be the sum of all the exponent values in the prime factorization of n. Show
that D(n) ≤ k−1

2 n + 2k−1

Solution to Problem 15:

First we note that if k = 1, then n is a prime and this is trivially true since k−1
2 n+ 2k−1 = 1.

Now, n can be expressed as p1...pk where pi’s are not necessarily distinct. So we assume that
k > 1.

7
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Case 1: Suppose n has at least three factors that are greater than or equal to 3. Then,
D(n) = n

∑k
i=1

1
pi
≤ n

∑k−3
i=1

1
2 + 31

3 = nk−1
2 ≤

k−1
2 n + 2k−1 and we are done.

Case 2: If n has at most one factor that is greater than or equal to 3. Then, n = 2k−1p for
some prime p. Then D(n) = n(k−1)

2 + n
p = k−1

2 n + 2k−1 and we are done.

Case 3: If n has two factors that are greater than or equal to 3. Then, n = 2k−2p1p2 for
some primes p1, p2. Then D(n) = n(k−22 + 1

p1
+ 1

p2
). We see that 2p1 + 2p2 ≤ p1p2 + 2, since

p1p2 − 2p1 − 2p2 + 4 = (p1 − 2)(p2 − 2) ≥ 0, since p1, p2 ≥ 3. Dividing by p1p2 we have
1
p1

+ 1
p2
≤ 1

2 + 2
p1p2

, so we see that D(n) ≤ n( (k−2)2 + 1
2 + 2

p1p2
) ≤ nk−1

2 + 2n
p1p2

= nk−1
2 + 2k−1

and we are done.

These cases cover all possible values of n so we are done.
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