1. Let p be a polynomial with degree less than 4 such that $p(x)$ attains a maximum at $x=1$. If $p(1)=p(2)=5$, find $p(10)$.
Answer: 5
Solution: Since p attains a maximum at $x=1$, we know that either p is a parabola or p is a constant polynomial. Since $p(1)=p(2)=5, p$ must be constant.
2. Let A, B, C be unique collinear points $A B=B C=\frac{1}{3}$. Let P be a point that lies on the circle centered at B with radius $\frac{1}{3}$ and the circle centered at C with radius $\frac{1}{3}$. Find the measure of angle $P A C$ in degrees.
Answer: 30 (degrees)
Solution: The angle $P C B$ has measure 60 degrees since $P C=P B=B C$. By the inscribed angle theorem, the measure of angle $P A C$ is one half of that, which is 30 degrees.
3. If $f(x+y)=f(x y)$ for all real numbers x and y, and $f(2019)=17$, what is the value of $f(17)$?

Answer: 17
Solution: If we set $x=0$, then we find that $f(0+y)=f(0 \cdot y)$, or $f(y)=f(0)$ for all real y. In other words, f is a constant function; thus, $f(17)=17$.
4. Justin is being served two different types of chips, A-chips, and B-chips. If there are $3 B$-chips and $5 A$-chips, and if Justin randomly grabs 3 chips, what is the probability that none of them are A-chips?
Answer: $\frac{1}{56}$
Solution: If none of the chips Justin grabs are A-chips, then all of them must be B-chips. The probability that all 3 chips are B-chips is $\frac{3}{8} \cdot \frac{2}{7} \cdot \frac{1}{6}=\frac{1}{56}$.
5. Point P is $\sqrt{3}$ units away from plane A. Let Q be a region of A such that every line through P that intersects A in Q intersects A at an angle between 30° and 60°. What is the largest possible area of Q ?
Answer: 8
Solution: Realize that the area is the difference of two circles with radius 1 and radius 3 respectively. The area is just $\left(3^{2}-1^{2}\right) \pi=8 \pi$.
6. How many square inches of paint are needed to fully paint a regular 6 -sided die with side length 2 inches, except for the $\frac{1}{3}$-inch diameter circular dots marking 1 through 6 (a different number per side)? The paint has negligible thickness, and the circular dots are non-overlapping.
Answer: $24-\frac{7 \pi}{12}$ or $\frac{288-7 \pi}{12}$
Solution: A blank die needs $2 \cdot 2 \cdot 6$ square inches of paint, and the $1+2+3+4+5+6=21$ dots take up $21 \pi r^{2}=\frac{7 \pi}{12}$. Therefore, a total of $24-\frac{7 \pi}{12}$ square inches of paint is needed.
7. Let $\triangle A B C$ be an equilateral triangle with side length M such that points E_{1} and E_{2} lie on side $A B, F_{1}$ and F_{2} lie on side $B C$, and G_{1} and G_{2} lie on side $A C$, such that $m=\overline{A E_{1}}=\overline{B E_{2}}=$
$\overline{B F_{1}}=\overline{C F_{2}}=\overline{C G_{1}}=\overline{A G_{2}}$ and the area of polygon $E_{1} E_{2} F_{1} F_{2} G_{1} G_{2}$ equals the combined areas of $\triangle A E_{1} G_{2}, \triangle B F_{1} E_{2}$, and $\triangle C G_{1} F_{2}$. Find the ratio $\frac{m}{M}$.

Answer: $\frac{1}{\sqrt{6}}$ or $\frac{\sqrt{6}}{6}$
Solution: The area of an equilateral triangle with side length m is $\frac{m^{2} \sqrt{3}}{4}$, so the areas of the smaller triangles adds up to $3 \frac{m^{2} \sqrt{3}}{4}$, and the area of the hexagon is $\frac{M^{2} \sqrt{3}}{4}-3 \frac{m^{2} \sqrt{3}}{4}$. Equating the two quantities and simplifying, $M^{2}=6 m^{2}$, so $\frac{m}{M}=\frac{1}{\sqrt{6}}$.
8. Let $\varphi=\frac{1}{2019}$. Define

$$
g_{n}=\left\{\begin{array}{ll}
0 & \text { if } \operatorname{round}(n \varphi)=\operatorname{round}((n-1) \varphi) \\
1 & \text { otherwise } .
\end{array}\right\}
$$

where round (x) denotes the round function.
Compute the expected value of g_{n} if n is an integer chosen from interval [1,2019 $\left.{ }^{2}\right]$.
Answer: $\frac{1}{2019}$
Solution: Since $\left\lfloor\frac{1009}{2019}\right\rceil=0$ while $\left\lfloor\frac{1010}{2019}\right\rceil=1$, we can see that $g_{n}=1$ only when $n=$ $1010+2019 k$ (for integer k), and $g_{n}=0$ otherwise. Thus, the expected value of g_{n} is $\frac{1}{2019}$.
9. Define an almost-palindrome as a string of letters that is not a palindrome but can become a palindrome if one of its letters is changed. For example, TRUST is an almost-palindrome because the R can be changed to an S to produce a palindrome, but TRIVIAL is not an almostpalindrome because it cannot be changed into a palindrome by swapping out only one letter (both the A and the L are out of place). How many almost-palindromes contain fewer than 4 letters?
Answer: 17550

Solution: No almost-palindrome can contain only 1 letter because all 1-letter strings are palindromes. In order for a 2-letter string to be an almost-palindrome, it must contain distinct letters; there are $26 \cdot 25$ of those. The 3-letter strings that are almost-palindromes either have 3 distinct letters or have 2 of the same letter in a row (and 1 other letter tacked on). In the former case, there are $26 \cdot 25 \cdot 24$ almost-palindromes; in the latter, there are $2 \cdot 26 \cdot 25$ (to account for order). Thus, there are a total of $26 \cdot 25+26 \cdot 25 \cdot 24+2 \cdot 26 \cdot 25=27 \cdot 26 \cdot 25=17550$ almost-palindromes with fewer than 4 letters.
10. Let $M A T H$ be a square with $M A=1$. Point B lies on $\overline{A T}$ such that $m \angle M B T=3.5 m \angle B M T$. What is the area of $\triangle B M T$?
Answer: $\frac{\sqrt{3}-1}{2}$ or $\frac{\sqrt{3}}{2}-\frac{1}{2}$ or $0.5(\sqrt{3}-1)$ or $0.5 \sqrt{3}-0.5$
Solution: Let $m \angle B M T=a$. Then $m \angle M B A=(180-3.5 a) ;$ since $\triangle M A B$ is right, $m \angle A M B=$ (3.5a-90). Thus, $3.5 a-90+a=45$, as $m \angle A M T=45^{\circ}(\overline{M T}$ is a diagonal of the rectangle $)$. It follows that $a=30$, so $m \angle A M B=15^{\circ}$; thus, $\triangle M A B$ is a 15-75-90 triangle. Recalling our trig ratios, we obtain $\tan 15^{\circ}=2-\sqrt{3}$, which yields $A B=2-\sqrt{3}$. We obtain an area of $\frac{\sqrt{3}-1}{2}$ for $\triangle B M T$ as a result.
11. A regular 17 -gon with vertices $V_{1}, V_{2}, \ldots, V_{17}$ and sides of length 3 has a point P on $\overline{V_{1} V_{2}}$ such that $\overline{V_{1} P}=1$. A chord that stretches from V_{1} to V_{2} containing P is rotated within the interior of the heptendecagon around V_{2} such that the chord now stretches from V_{2} to V_{3}. The chord then hinges around V_{3}, then V_{4}, and so on, continuing until P is back at its original position. Find the total length traced by P.

Answer: 45

Solution: Note that the end trace is a set of circle-arcs of radius 1 and 2 each with total angle equal to the sum of internal angles of the heptendecagon. As a result, the total length is $2 \cdot \pi \cdot 15+1 \cdot \pi \cdot 15=45 \pi$
12. Box is thinking of a number, whose digits are all " 1 ". When he squares the number, the sum of its digit is 85 . How many digits is Box's number?

Answer: 11

Solution: Notice that

$$
\begin{aligned}
1 \cdot 1 & =1 \\
11 \cdot 11 & =121 \\
111 \cdot 111 & =12321 \\
1111 \cdot 1111 & =1234321,
\end{aligned}
$$

etc., until you get to 10 , when it becomes 1234567900987654321 . This is because, at the digit where the 10 is supposed to go, it could only take up one spot, so the 1 gets carried to where the 9 goes, which, when added, becomes a 10 , which gets carried again. The next digit is an 8, which becomes a 9 . Thus, the 8 disappears. Using similar logic, we can calculate that $11 \cdots 1$ with 11 digits has sum 85 . Another way to see this is by computing the past powers of 1 's and using the fact that the sum of the digits is the same modulo 3 . One can eliminate many possibilities and
that if there are enough 1's the sum grows fast.
Note: Box's number doesn't have to be an integer.
13. Two circles O_{1} and O_{2} intersect at points A and B. Lines $\overline{A C}$ and $\overline{B D}$ are drawn such that C is on O_{1} and D is on O_{2} and $\overline{A C} \perp \overline{A B}$ and $\overline{B D} \perp \overline{A B}$. If minor arc $\overparen{A B}=45$ degrees relative to O_{1} and minor arc $\overparen{A B}=60$ degrees relative to O_{2} and the radius of $O_{2}=10$, the area of quadrilateral $C A D B$ can be expressed in simplest form as $a+b \sqrt{k}+c \sqrt{\ell}$. Compute $a+b+c+k+\ell$.

Answer: 155

Solution: Note that since $\angle C A B$ and $\angle B D A$ are both 90 degrees, $B C$ and $A D$ are diameters of circles O_{1} and O_{2}, respectively. Thus, the area of the quadrilateral is the area of triangle $A B D$ plus the area of triangle $A B C$. Since arc $A B$ is 60 degrees with respect to O_{2}, the radius of O_{2} is 10 , so we can compute that $B D=10 \sqrt{3}$, so the area of triangle $A B D$ is $5 \cdot 10 \sqrt{3}=50 \sqrt{3}$. Let r be the radius of circle O_{1}. Then by the law of cosines,

$$
\begin{gathered}
2 r^{2}-2 r^{2} \cdot \frac{\sqrt{2}}{2}=100 \\
2 r^{2}+2 r^{2} \cdot \frac{\sqrt{2}}{2}=A C^{2}:=x^{2} .
\end{gathered}
$$

Using this, we can say that

$$
x^{2}=\frac{100(2+\sqrt{2})}{2-\sqrt{2}}
$$

so

$$
x=10 \sqrt{\frac{2+\sqrt{2}}{2-\sqrt{2}}}=10+10 \sqrt{2} .
$$

Thus, the area of $A B C$ is $50+50 \sqrt{2}$, and the area of quadrilateral $C A D B$ is $50+50 \sqrt{2}+50 \sqrt{3}$, which yields an answer of 155 .
14. On a 24 hour clock, there are two times after 01:00 for which the time expressed in the form $\mathrm{hh}: \mathrm{mm}$ and in minutes are both perfect squares. One of these times is $01: 21$, since 121 and $60+21=81$ are both perfect squares. Find the other time, expressed in the form hh:mm.

Answer: 20:25

Solution: We can guess and check to find that $20: 25$ and $20 \cdot 60+25=1225$ are both perfect squares, so that solution works. Now let us prove these are the only two solutions.
We wish to find h, m, x, and y for which $100 h+m=x^{2}$ and $60 h+m=y^{2}$. We find $h=\left(x^{2}-y^{2}\right) / 40$, so $x^{2}-y^{2}$ is divisible by both 8 and 5 . The first implies that $x \equiv y(\bmod 2)$, whereas the second implies $x \equiv \pm y(\bmod 5)$. This means either $x=y+10 k$ or $x=-y+10 k$.
In the first case, we have $h=\frac{k(y+5 k)}{2}$ and $m=y^{2}-30 k y-150 k^{2}$. Since $m \geq 0$, we get $y \geq 30 k$. This implies $h \geq \frac{35 k^{2}}{2}$, and thanks to the bounds on h, further implies that $k=1$. Now we know $h=\frac{(y+5)}{2}$ and $m=y^{2}-30 y-150$. The first equation tells us that y is odd. Using the second one along with the bound $0 \leq m<60$ tells us that $y=35$, which gives the solution $h=20$ and $m=25$ from above.

In the second case, we can write $x=5 k+z, y=5 k-z$. This gives $h=\frac{k z}{2}, m=z^{2}-40 k z+25 k^{2}=$ $z^{2}+5 k(5 k-8 z)$. By enforcing our bounds, we find that $k>z$ must hold. If $k=z+1$, $b=z^{2}+5(z+1)(5-3 z)$, which is negative for $z \geq 2$. If $z=1, k=2$ gives $b=21, a=1$ which is the solution provided in the problem statement. Now we know $k>z+1$ and $k z$ is even and less than 48 , which gives us finitely many cases to check. Furthermore, for a fixed z, once we've found a k giving an m thats too big, we can check the next z. If $z=2, k=4$ gives $m=84$, which is too big. If $z=3, k=6$ gives $m=189$, again too big. If $z=4, k=6$ gives $-44, k=7$ gives $b=119$, too big. If $z=5, k=8$ gives $h=25$, the solution we just found above. Those are all the possibilities for which $k z<48$, as desired.
15. How many distinct positive integers can be formed by choosing their digits from the string 04072019?
Answer: 12340

Solution:

Suppose the number of digits is t. Suppose there are r non-zero digits. Then, total number of distinct numbers with t digits and r nonzero digits is $\frac{5!}{(5-r)!} \cdot\binom{t-1}{t-r}$. The first term comes from the fact that we need to pick r non-zero digits out of 5 total possible with ordering. The second term is how we arrange the $t-r$ zero digits in the last $t-1$ places (since 0 cannot occupy the first position). In the case there is only one digit, we can disregard the second term.
So if $t=1$, we know that $r=1$ and so our only term is $\frac{5!}{4!}=5$. If $t=2$, then we can have $r=1$ or 2 , from which we get 5 and 20. If $t=3$ then $r=1,2,3$, from which we get $5,40,60$. If $t=4$ we have $r=1,2,3,4$ from which we get $5,60,180,120$. When $t=5$, we have $r=2,3,4,5$ since we know that the number of zero digits must be less than or equal to 3 so $t-r \leq 3$. In this case we get $80,360,480,120$. When $t=6$ we get $r=3,4,5$ (since $r \leq 5$) which is $600,1200,600$. At $t=7$ we have $r=4,5$ with 1800 and 2400 . And at $t=8$ we have $r=5$ and 4200. Adding all of these numbers up, we come up with our final answer of 12340 .
16. Let $A B C$ be a triangle with $A B=26, B C=51$, and $C A=73$, and let O be an arbitrary point in the interior of $\triangle A B C$. Lines l_{1}, l_{2}, and l_{3} pass through O and are parallel to $\overline{A B}, \overline{B C}$, and $\overline{C A}$, respectively. The intersections of l_{1}, l_{2}, and l_{3} and the sides of $\triangle A B C$ form a hexagon whose area is A. Compute the minimum value of A.
Answer: 280
Solution: First realize that the minimum area of the hexagon is $\frac{2}{3}$ that of the triangle, regardless of the angle measures of the triangle. This can be proven using arguments regarding parallel lines and similar triangles. Proof:
Notation: l_{1} intersects $A C$ at $D, B C$ at $G ; l_{2}$ intersects $A B$ at $F, A C$ at $I ; l_{3}$ intersects $A B$ at $E, B C$ at H. Then $D E F G H I$ is the hexgon whose minimum area is wanted.
By tracing parallel lines and similar triangles, we have

$$
\begin{aligned}
\frac{A_{E F O}}{A_{A B C}}+\frac{A_{O G H}}{A_{A B C}}+\frac{A_{D O I}}{A_{A B C}} & =\left(\frac{F O}{B C}\right)^{2}+\left(\frac{G H}{B C}\right)^{2}+\left(\frac{O I}{B C}\right)^{2} \\
& =\left(\frac{B G}{B C}\right)^{2}+\left(\frac{G H}{B C}\right)^{2}+\left(\frac{H C}{B C}\right)^{2} \\
& \geq \frac{1}{3}\left(\frac{B G}{B C}+\frac{G H}{B C}+\frac{H C}{B C}\right)^{2}=\frac{1}{3}
\end{aligned}
$$

Where the last line follows from Cauchy-Schwarz inequality. Hence we have $A_{E F O}+A_{O G H}+$ $A_{D O I} \geq \frac{1}{3} A_{A B C}$, and from there $A_{A E D}+A_{F B G}+A_{I H C} \leq \frac{1}{2}\left(1-\frac{1}{3}\right) A_{A B C}=\frac{1}{3} A_{A B C}$. Therefore, the area of the hexgon $A_{D E F G H I}=A_{A B C}-\left(A_{A E D}+A_{F B G}+A_{I H C}\right) \geq 1-\frac{1}{3}=\frac{2}{3}$. The equality is reached when O is the centroid of triangle $A B C$.
Use Heron's formula and we can get the area of the triangle is $\sqrt{75 \cdot 49 \cdot 24 \cdot 2}=420$. Thus the minimum area of the hexagon is $\frac{420}{3} \cdot 2=280$
17. Let C be a circle of radius 1 and O its center. Let $\overline{A B}$ be a chord of the circle and D a point on $\overline{A B}$ such that $O D=\frac{\sqrt{2}}{2}$ such that D is closer to A than it is to B, and if the perpendicular line at D with respect to $\overline{A B}$ intersects the circle at E and $F, A D=D E$. The area of the region of the circle enclosed by $\overline{A D}, \overline{D E}$, and the minor arc $A E$ may be expressed as $\frac{a+b \sqrt{c}+d \pi}{e}$ where a, b, c, d, e are integers, $\operatorname{gcd}(a, b, d, e)=1$, and c is squarefree. Find $a+b+c+d+e$.
Answer: 16
Solution: Reflect lines $\overline{A C}$ and $\overline{E F}$ across the origin. This forms a square in the center with 8 other regions, four of which are the same area as the desired region, and four of which are the same area. Call our desired area a and the other area b. Then we obtain $4(a+b)=\pi-1$. Looking at the sector cut off by $\overline{A B}$, we may compute that the angle of that is 120°; thus, it has area $\frac{\pi}{3}$. Triangle $O A B$ has area $\frac{\sqrt{3}}{4}$. Thus, we obtain $2 a+b=\frac{\pi}{3}-\frac{\sqrt{3}}{4}$. As a result, we find that

$$
a=\frac{\pi}{3}-\frac{\sqrt{3}}{4}-\frac{\pi}{4}+\frac{1}{4}=\frac{\pi}{12}-\frac{\sqrt{3}-1}{4}
$$

which yields an answer of 16 .
18. Define $f(x, y)$ to be $\frac{|x|}{|y|}$ if that value is a positive integer, $\frac{|y|}{|x|}$ if that value is a positive integer, and zero otherwise.
We say that a sequence of integers l_{1} through l_{n} is good if $f\left(l_{i}, l_{i+1}\right)$ is nonzero for all i where $1 \leq i \leq n-1$, and the score of the sequence is $\sum_{i=1}^{n-1} f\left(l_{i}, l_{i+1}\right)$.
Compute the maximum possible score of a good subsequence subject to the further constraints that the absolute value of every element is between 2 and 6 , and that if b directly follows a in the sequence, it can only do so once, and a cannot directly follow b afterwards.

Answer: 37

Solution: To maximize the score of the sequence, we want to maximize the sum of ordered pairs $f\left(l_{i}, l_{i+1}\right)$ while maintaining its goodness. If we start with 6 , then we can continue through the factors of 6 (positive and negative) and then make sure not to repeat values in accordance with the stipulations. Once we reach 6 again, we are done. In this manner, the sequence is $6,6,3,3$, $-6,-6,-3,-3,6,6,2,2,4,4,-2,-2,-4,-4,2,2,-6,-6,-2,-2,6,6$ so the maximum score is 37 . (This order in particular is optimal, since we are going through the largest numbers that have the smallest number of factors first - namely 3 , which is the largest prime factor of 6.) Note that, if we were to start with a value other than 6 , then that number would have fewer factors than 6 , and so would result in $f(x, y)=0$ sooner than would 6 (as we would exhaust the set of possible factors; if we increase the absolute value between two numbers, then the likelihood
of having $f(x, y)=0$ increases, as clearly a smaller number cannot be a multiple of the larger number). Hence no other solutions can be optimal.
19. Let a and b be real numbers such that

$$
\max _{0 \leq x \leq 1}\left|x^{3}-a x-b\right|
$$

is as small as possible. Find $a+b$ in simplest radical form. (Hint: If $f(x)=x^{3}-c x-d$, then the maximum (or minimum) of $f(x)$ either occurs when $x=0$ and/or $x=1$ and/or when x satisfies $\left.3 x^{2}-c=0\right)$.
Answer: $1-\frac{\sqrt{3}}{9}$ or $\frac{9-\sqrt{3}}{9}$
Solution: Let's first take an intuitive guess at what the answer to this question is. First, consider $x^{3}-x$. This has a minimum in $[0,1]$ at $\left(\frac{\sqrt{3}}{3},-\frac{2 \sqrt{3}}{9}\right)$. Shifting the graph up by $\frac{\sqrt{3}}{9}$, we guess that $x^{3}-x+\frac{\sqrt{3}}{9}$ achieves the minimum. Define a function $\ell: \mathbb{R}[x] \rightarrow \mathbb{R}$ (where $\mathbb{R}[x]$ is the set of polynomials of x with coefficients in \mathbb{R}) such that

$$
\ell(f)=\frac{\frac{1}{\sqrt{3}} f(1)+\left(1-\frac{1}{\sqrt{3}}\right) f(0)-f\left(\frac{\sqrt{3}}{3}\right)}{2}
$$

Since $\frac{|1|+\left|\frac{1}{\sqrt{3}}\right|+\left|1-\frac{1}{\sqrt{3}}\right|}{2}=1$, we have $\ell(f) \leq \max _{0 \leq x \leq 1}|f(x)|$. In addition, $\ell\left(x^{3}-x+\frac{\sqrt{3}}{9}\right)=$ $\frac{\sqrt{3}}{9}=\max _{0 \leq x \leq 1}|p(x)|$ where $p(x)=x^{3}-x+\frac{\sqrt{3}}{9}$, and $\ell(a x+b)=0$ for real a and b. If some other $c x+d$ achieves a lower value than $x-\frac{\sqrt{3}}{9}$ for $\left|x^{3}-c x-d\right|$, then $\ell\left(x^{3}-c x-d\right)>\max _{0 \leq x \leq 1}\left|x^{3}-c x-d\right|$.
20. Define a sequence F_{n} such that $F_{1}=1, F_{2}=x, F_{n+1}=x F_{n}+y F_{n-1}$ where and x and y are positive integers. Suppose

$$
\frac{1}{F_{k}}=\sum_{n=1}^{\infty} \frac{F_{n}}{d^{n}}
$$

has exactly two solutions (d, k) with $d>0$ is a positive integer. Find the least possible positive value of d.

Answer: 3

Solution: Let $F_{1}=a, F_{2}=b=x$. Notice that $F_{n+1}=x F_{n}+y F_{n-1}$ and that $b=a x$. We begin the solution with a series of steps:

1. First, we give a formula for the sum. Let S denote the sum. Then we have

$$
\begin{aligned}
S & =\sum_{n=1}^{\infty} \frac{F_{n}}{d^{n}}=\frac{a}{d}+\frac{b}{d^{2}}+\sum_{n=3}^{\infty} \frac{F_{n}}{d^{n}} \\
& =\frac{a}{d}+\frac{b}{d^{2}}+\frac{x}{d} \sum_{n=2}^{\infty} \frac{F_{n}}{d^{n}}+\frac{y}{d^{2}} \sum_{n=1}^{\infty} \frac{F_{n}}{d^{n}} \\
& =\frac{a}{d}+\frac{b}{d^{2}}+\frac{x}{d}\left(S-\frac{a}{d}\right)+\frac{y}{d^{2}} S
\end{aligned}
$$

This implies that

$$
S=\frac{a d+b-a x}{d^{2}-d x-y}=\frac{1}{F_{k}} .
$$

2. Next, rearrange into a quadratic equation in d :

$$
d^{2}-d\left(a F_{k}+x\right)-F_{k} b+a F_{k} x-y=0 .
$$

Since d must be an integer, it must have a square discriminant:

$$
\left(a F_{k}+x\right)^{2}-4\left(-F_{k} b+a x F_{k}-y\right)=\left(a F_{k}+x\right)^{2}+4 y=z^{2}
$$

for some integer z.
3. Next, we show that $k \leq 2$. The key observation here is that if $x^{2}+c=y^{2}$ with $x, y, c>0$ are integers, then $c \geq 2 x+1$. If $k \geq 4$, then $F_{k} \geq 1+2 y$ (the minimum occurs when $F_{1}=F_{2}=1$ and $x=1$), so $2 F_{k}>4 y$, so $\left(a F_{k}+x\right)^{2}+4 y$ cannot possibly be a perfect square. Furthermore, if $d=3$, then $a=1$, since if $a \geq 2$, then $2 \cdot\left(a F_{k}+x\right) \geq 2(2(1+y))>$ $4 y$. If $a=1$, then $F_{3}=b x+y$. Notice in addition that $(y+2)^{2}-y^{2}=4 y+4$, so $a F_{k}+x=b x+y+x \leq y+1$, so $b x+x=1$. This contradicts b, x being positive.
4. Plugging in $F_{1}=a, F_{2}=b$ into the equation, we see that $(a b+x)^{2}+4 y=\left(a^{2} x+x\right)^{2}+4 y$ and $\left(a^{2}+x\right)^{2}+4 y$ must be perfect squares. Plugging in $a=1$, we get:

$$
\begin{gathered}
4 x^{2}+4 y=z_{1}^{2} \\
(x+1)^{2}+4 y=z_{2}^{2} .
\end{gathered}
$$

Plugging in $x=1$, we obtain that $d=3$ with $k=1,2$ are two solutions. But the point is that there is only one d, and hence $d=3$ is the answer.

Remark The intended wording was to have two solutions d for a fixed k. In this case, $x=1$ doesn't work since we obtain only one solution for d. We see that $x=2$ yields no value of $d, x=3$ yields no value, $x=4$ yields $\left(z_{1}, z_{2}\right)=(20,19)$ which gives $d=12, x=5$ yields no solution, $x=6$ yields $d=27, x=7$ yields no such $d, x=8$ yields $d=12$, 48, $x=9$ yields $d=18$, and finally $x=10$ yields $d=28,75$, and we see that further d cannot yield larger values.

