1. We inscribe a circle $\omega$ in equilateral triangle $A B C$ with radius 1 . What is the area of the region inside the triangle but outside the circle?
Answer: $3 \sqrt{3}-\pi$.
Solution: Since the radius of $\omega$ is 1 , we can use $30-60-90$ triangles to get that the side length of $A B C$ is $2 \sqrt{3}$. Thus since the area of $\omega$ is $\pi$ and the area of $A B C$ is $\sqrt{3} / 4 \cdot(2 \sqrt{3})^{2}=3 \sqrt{3}$, the desired area is $3 \sqrt{3}-\pi$.
2. Define the inverse of triangle $A B C$ with respect to a point $O$ in the following way: construct the circumcircle of $A B C$ and construct lines $A O, B O$, and $C O$. Let $A^{\prime}$ be the other intersection of $A O$ and the circumcircle (if $A O$ is tangent, then let $A^{\prime}=A$ ). Similarly define $B^{\prime}$ and $C^{\prime}$. Then $A^{\prime} B^{\prime} C^{\prime}$ is the inverse of $A B C$ with respect to $O$. Compute the area of the inverse of the triangle given in the plane by $A(-6,-21), B(-23,10), C(16,23)$ with respect to $O(1,3)$.

## Answer: 715

Solution: Observe that $O$ is the circumcenter of $A B C$. Because of this, our definition of the inverse and some angle chasing show that the inverse of $A B C$ with respect to $O$ is equivalent to rotating $A B C 180^{\circ}$ about $O$. Thus the area of the inverse is the same as the area of $A B C$, which we can find using the shoelace determinant:

$$
-\frac{1}{2}\left|\begin{array}{ccc}
-6 & -21 & 1 \\
-23 & 10 & 1 \\
16 & 23 & 1
\end{array}\right|=715
$$

3. We say that a quadrilateral $Q$ is tangential if a circle can be inscribed into it, i.e. there exists a circle $C$ that does not meet the vertices of $Q$, such that it meets each edge at exactly one point. Let $N$ be the number of ways to choose four distinct integers out of $\{1, \ldots, 24\}$ so that they form the side lengths of a tangential quadrilateral. Find the largest prime factor of $N$.

## Answer: 43

Solution: Note that the sides of a quadrilateral $A B C D$ in which a circle can be inscribed are of the form $A B=a+b, B C=b+c, C D=c+d, D A=d+a$, i.e. $A B+C D=B C+D A$. (insert picture). The converse also holds true: start with any quadrilateral $A B C D$ with the given side lengths; there exists a circle $O$ tangent to $A B, B C, C D$ centered at the intersection of the bisectors of $\angle A B C$ and $\angle B C D$. Suppose $O$ is not tangent to $D A$. Then draw the line through $A$ tangent to $O$, and let $P$ be its intersection with $C D$. Now $A B C P$ is a quadrilateral with a circle inscribed in it, so $A B+C P=B C+P A$. Assume first that $P$ is between $C$ and $D$. We have $A B+C D=B C+D A$ so $A B+C P+P D=B C+D A$, and thus $A P+P D=D A$. $\therefore P=D$, and $O$ is tangent to $D A$. If $P$ is not between $C$ and $D$ then $D$ is between $C$ and $P$, so we get $A B+C D+D P=B C+P A$ and $A B+C D=B C+D A$. Hence $A D+D P=P A$, so again $P=D$ and $O$ is tangent to $A D$.
Let $n \in \mathbf{N}$; we shall restrict to the case where $n$ is even in view of our problem. For each integer $k$, the number of pairs $1 \leq x<y \leq n$ such that $x+y=k$ is $\min (n-\lfloor(k-1) / 2\rfloor,\lfloor(k-1) / 2\rfloor)$. Thus for $3 \leq k \leq n+1$, the number of pairs for each $k$ is $\lfloor(k-1) / 2\rfloor$, so the number of pairs $(x, y),(z, w)$ such that $x, y, z, w$ distinct and $x+y=z+w=k$ is $2 \sum_{i=2}^{i=n / 2}\binom{i}{2}=\sum_{i=2}^{i=n / 2} i(i-1)=$ $n(n+2)(n-2) / 24$. From here, we obtain that the largest prime factor is 43 .

Remark: The claims above regarding the characterization of tangential quadrilaterals are Pitot's Theorem and its converse (due to Steiner, circa. 1846), respectively. The proof given here can be found at https://brilliant.org/wiki/pitots-theorem/.

