1. Consider the figure below, where every small triangle is equilateral with side length 1 . Compute the area of the polygon $A E K S$.

Answer: $5 \sqrt{3}$.

Solution: We see that the figure is a trapezoid and we can calculate via $30-60-90$ triangles that the height of the trapezoid is $2 \sqrt{3}$. Using the trapezoid area formula, the area is just $(1+4) / 2 \cdot 2 \sqrt{3}=5 \sqrt{3}$.
2. A set of points in the plane is called full if every triple of points in the set are the vertices of a non-obtuse triangle. What is the largest size of a full set?

Answer: 4
Solution: We claim that 4 is the best we can do. The relevent construction is one where the points are the vertices of a square. Now, it suffices to show that any set of 5 points cannot be full, because any larger set contains a set of 5 points as a subset. Now, if the points form a convex pentagon, then since the average angle between two sides of the pentagon is always $108>90$, there must be three points that form an obtuse angle. If the convex hull of the points is a rectangle (if it isn't a rectangle then that subset of 4 points isn't full), then the remaining point is inside the rectangle and thus always induces an obtuse angle with two opposite corners of the rectangle. Finally, if the convex hull of the points is a triangle, the same logic applies. Hence $\boxed{4}$ is the best we can do.
3. Let $A B C D$ be a parallelogram with $B C=17$. Let M be the midpoint of $B C$ and let N be the point such that $D A N M$ is a parallelogram. What is the length of segment $N C$?

Answer: $\frac{51}{2}$ or 25.5

Solution: Drawing the figure, we see that N, B, M, C are collinear. Moreover, We have $\angle M C D=\angle N B A$ and $\angle N A B=\angle D M C$. Thus, $N B A$ is similar $M C D$, and since $B A=$ $C D$, they are congruent. Thus, $N B=B M=M C=B C / 2$. Hence, the desired length is $3 \cdot 17 / 2=\frac{51}{2}$.
4. The area of right triangle $A B C$ is 4 , and hypotenuse $A B$ is 12 . Compute the perimeter of $A B C$.

Answer: $12+4 \sqrt{10}$
Solution: Let $A B=x$ and $B C=y$. Then from the Pythagorean Theorem, we know that $x^{2}+y^{2}=144$. Moreover, since the area of $A B C$ is 4 , we know that $x y=8$, hence

$$
12+x+y=12+\sqrt{(x+y)^{2}}=12+\sqrt{x^{2}+y^{2}+2 x y}=12+\sqrt{160}=12+4 \sqrt{10}
$$

5. Find the area of the set of all points z in the complex plane that satisfy

$$
|z-3 i|+|z-4| \leq 5 \sqrt{2}
$$

Answer: $\frac{25}{4} \sqrt{2} \pi$

Solution: Consider the equality case of the above condition. Observe that this constrains to all z such that the sum of the distances between z and $3 i$ and z and 4 is constant, which is the definition of an ellipse with foci at those two points. Moreover, since $|z-3 i|+|z-4|=5 \sqrt{2}$, it isn't hard to see that the major and minor axes of this ellipse are $5 \sqrt{2}$ and 5 , respectively. To see this, let O be the center of the ellipse. Let P be the point on the ellipse such that $O P$ is perpendicular to the major axes. If the minor axes is 5 , then via $45-45-90$ triangles, the sum of the distances from point P to the points $3 i$ and 4 is $5 \sqrt{2}$. Hence, the minor axis is 5 . Therefore, since the area of an ellipse is given by $\pi a b$, where a and b are half the length of the major and minor axes respectively, the desired area is

$$
\frac{5}{2} \cdot \frac{5 \sqrt{2}}{2} \cdot \pi=\frac{25 \sqrt{2} \pi}{4}
$$

6. Let $A B E$ be a triangle with $A B / 3=B E / 4=E A / 5$. Let $D \neq A$ be on line $A E$ such that $A E=E D$ and D is closer to E than to A. Moreover, let C be a point such that $B C D E$ is a parallelogram. Furthermore, let M be on line $C D$ such that $A M$ bisects $\angle B A E$, and let P be the intersection of $A M$ and $B E$. Compute the ratio of $P M$ to the perimeter of $A B E$.
Answer: $\sqrt{5} / 8$
Solution: The ratio condition on the sides of $A B C$ is equivalent to saying that for some positive real $x, A B=3 x, B E=4 x$, and $E A=5 x$, hence $A B E$ is similar to a $3-4-5$ right triangle. Now, consider the homothety centered at A sending E to D. Observe that this same homothety sends P to M, hence $A P: P M=A E: E D=1: 1$, thus it suffices to calculate the ratio $A P: A B+B E+E A$. Indeed, from the Angle Bisector Theorem, we have that $B P: P E=A B: A E=3: 5$, hence $B P=\frac{3}{2} x$ and $P E=\frac{5}{2} x$. Moreover, since $\angle A B E=90^{\circ}$, we can use the Pythagorean Theorem on $A B P$ to find that $A P=\frac{3 \sqrt{5}}{2} x$. Therefore, we have the desired ratio is

$$
\frac{3 / 2 \sqrt{5} x}{3 x+4 x+5 x}=\frac{\sqrt{5}}{8}
$$

7. Points $A B C D$ are vertices of an isosceles trapezoid, with $A B$ parallel to $C D, A B=1, C D=2$, and $B C=1$. Point E is chosen uniformly and at random on $C D$, and let point F be the point on $C D$ such that $E C=F D$. Let G denote the intersection of $A E$ and $B F$, not necessarily in the trapezoid. What is the probability that $\angle A G B>30^{\circ}$?
Answer: $\frac{5-2 \sqrt{3}}{2}$
Solution: Let M be the midpoint of $C D, Y$ the midpoint of $C M$ and X the midpoint of $D M$. Notice that $A M D, M B C$, and $A M B$ are all equilateral triangles of side length 1 . If E is chosen on the segment $M C$, then the condition is satisfied because as E moves from M to C, the angle $\angle A G B$ increases, and if $E=M$, then $\angle A G B=60$. If E is chosen off the segment $X M$, then $\angle B A E \leq 75$, which corresponds to $X E \leq \frac{\sqrt{3}}{2} \tan (15)=\sqrt{3}-\frac{3}{2}$. Finally, if E is chosen in the segment $D X$, then $\angle A E X \leq 75$, or that $X E \geq \frac{\sqrt{3}}{2} \cot (75)=\sqrt{3}-\frac{3}{2}$. Thus, the total length that E can lie on is $2-(2 \sqrt{3}-3)=5-2 \sqrt{3}$, so the probability is $\frac{5-2 \sqrt{3}}{2}$.
8. Let $A B C$ be a triangle with $A B=13, B C=14$, and $C A=15$. Let G denote the centroid of $A B C$, and let G_{A} denote the image of G under a reflection across $B C$, with G_{B} the image of G under a reflection across $A C$, and G_{C} the image of G under a reflection across $A B$. Let O_{G} be the circumcenter of $G_{A} G_{B} G_{C}$ and let X be the intersection of $A O_{G}$ with $B C$ and Y denote the intersections of $A G$ with $B C$. Compute $X Y$.
Answer: $\frac{196}{197}$
Solution: Perform a homothety with ratio $1 / 2$ about G. Then the image of $G_{A} G_{B} G_{C}$ is the pedal triangle of G with respect to $A B C$. We claim that the image of O_{G} lands on the midpoint of G and its isogonal conjugate, the symmedian point K of $A B C$. Indeed, let G_{A}^{\prime} be the image of G_{A} and define G_{B} and G_{C} similarly, and let $K_{A} K_{B} K_{C}$ be the pedal triangle of K with respect to $A B C$. One can check that

$$
A G_{C}^{\prime} \cdot A K_{C}=A G \cdot A K \cdot \cos \angle B A G \cdot \cos \angle B A K=A G_{B}^{\prime} \cdot A K_{B}
$$

hence by the converse of Power of a Point, the points $G_{C}^{\prime}, G_{B}^{\prime}, K_{C}$, and K_{B} are concyclic. By symmetry, it then follows that $G_{A}^{\prime} G_{B}^{\prime} G_{C}^{\prime}$ and $K_{A} K_{B} K_{C}$ share a circumcircle. Now, since the circumcenter of cyclic hexagon $K_{A} G_{A}^{\prime} K_{B} G_{B}^{\prime} K_{C} G_{C}^{\prime}$ must lie on the perpendicular bisectors of $K_{A} G_{A}^{\prime}, K_{B} G_{B}^{\prime}$, and $K_{C} G_{C}^{\prime}, O_{G}^{\prime}$ clearly is the midpoint of $G K$, as desired.
Now, if we reverse this homothety to send $G_{A}^{\prime} G_{B}^{\prime} G_{C}^{\prime}$ back to $G_{A} G_{B} G_{C}, O_{G}^{\prime}$ is sent back to O_{G}. But since this homothety is centered at G, O_{G}^{\prime} is the midpoint of $K G$, and this homothety has ratio $2, O_{G}$ must therefore coincide with K, hence $A X$ is a symmedian of $A B C$. It is well known that $B X: X C=A B^{2}: A C^{2}$, hence it is a straightforward calculation to get that

$$
X Y=B Y-B X=7-\frac{169 \cdot 14}{169+225}=\frac{196}{197}
$$

9. Let $A B C D$ be a tetrahedron with $\angle A B C=\angle A B D=\angle C B D=90^{\circ}$ and $A B=B C$. Let E, F, G be points on $A D, B D$, and $C D$, respectively, such that each of the quadrilaterals $A E F B, B F G C$, and $C G E A$ have an inscribed circle. Let r be the smallest real number such that area $(E F G) /$ area $(A B C) \leq r$ for all such configurations A, B, C, D, E, F, G. If r can be expressed as $\frac{\sqrt{a-b \sqrt{c}}}{d}$ where a, b, c, d are positive integers with $\operatorname{gcd}(a, b)$ squarefree and c squarefree, find $a+b+c+d$.

Answer: 330

Solution: The key idea here is that the three circles only depend on the length of $B D$. Because each quadrilateral shares three sides with a triangle, the incircle of the quadrilateral is also the incircle of the triangle. Hence, it follows that for every value of $B D$, there is exactly one positioning of E, F, G that satisfies the conditions of the problem. This is because there are exactly two planes that are tangent to the three incircles, one of them the base of the triangle. Now, from here we just need to analyze the area of $E F G$ as $B D$ changes. Observe that as $B D$ increases, so does the area of $E F G$. This is because as D goes to infinity, the tetrahedron approaches a box-like structure, we find that the area of the cross section with the plane will grow as $B D$ approaches infinity. This is because the area of the bigger incircle will grow faster than the area of the smaller incircle, so the tilt of the plane with respect to the base of the tetrahedron will only get larger. Hence if we send $B D$ to infinity and calculate the area of $E F G$, we can get our least upper bound.

If we send $B D$ to infinity, then each of $A D, B D$, and $C D$ are perpendicular to the plane of $A B C$. Naturally, this makes calculation fairly straightforward - fix $A B C$ to have area $1 / 2$ (i.e. its legs are length 1), and then one can compute that $E G=\sqrt{2}$ easily via symmetry. Now we convert to coordinates. Let $B=(0,0,0), A=(0,1,0), C=(1,0,0)$. Then $E=(0,1, \sqrt{2}), G=(1,0, \sqrt{2})$ and let $F=(0,0, k)$. Since $G F B C$ is an inscribed quadrilateral, we have $G F+B C=B F+G C$. By the pythagorean theorem, we have $F G=\sqrt{1+(\sqrt{2}-k)^{2}}$, so

$$
k+\sqrt{2}=1+\sqrt{1+(\sqrt{2}-k)^{2}}
$$

which yields a solution of $k=\frac{4+\sqrt{2}}{7}$. Then we can compute the height of $E F G$ via the pythagorean theorem which is equal to $\sqrt{\frac{225-96 \sqrt{2}}{98}}$. Thus, the ratio is

$$
\frac{\frac{\sqrt{2}}{2} \cdot \sqrt{\frac{225-96 \sqrt{2}}{98}}}{\frac{1}{2}}=\frac{\sqrt{225-96 \sqrt{2}}}{7}
$$

which yields an answer of 330 .
remark: one can use trigonometry (namely the tangent double angle identity) to find that $\tan \angle F E A=\frac{6 \sqrt{2}-4}{7}$ and finish the problem off that way.
10. A $3-4-5$ point of a triangle $A B C$ is a point P such that the ratio $A P: B P: C P$ is equivalent to the ratio $3: 4: 5$. If $A B C$ is isosceles with base $B C=12$ and $A B C$ has exactly one $3-4-5$ point, compute the area of $A B C$.
Answer: $9 \sqrt{2835}$ or $81 \sqrt{35}$
Solution: We present a computational solution that relies on two synthetic observations that we present without proof:
Claim 1: Given two points X, Y and a fixed ratio k, the set of all points Z such that $X Z / Y Z=k$ is a circle. Furthermore, the line $X Y$ passes through the center of the circle. These circles are known as Apollonius circles.
Claim 2: Given a triangle $A_{1} A_{2} A_{3}$ and ratios k_{1}, k_{2}, k_{3}, the circles $\left(A_{1}, A_{2}, k_{1}\right),\left(A_{2}, A_{3}, k_{2}\right)$, and $\left(A_{3}, A_{1}, k_{3}\right)$ are coaxial, where (X, Y, k) denotes the locus of all points Z with $X Z / Y Z=k$.

Let Γ_{A} be the set of all points P such that $A P / B P=\frac{3}{4}$, with Γ_{B} and Γ_{C} defined similarly. From Claim 1, we know that these are all circles. Now, observe that a $3-4-5$ point must lie on all three of Γ_{A}, Γ_{B}, and Γ_{C}. Since these circles are coaxial, it follows that all three must be tangent to ensure that there is exactly one $3-4-5$ point.

With these synthetic observations, we can now begin computation. Our strategy will take advantage of the following fact: if two circles are externally tangent, then the distance between their centers is the sum of their radii, and if two circles are internally tangent then the distance between their centers is the positive difference of their radii. Let X, Y lie on line $B C$ such that $B X=8, C X=10, B Y=72$, and $C Y=90$. Note that since $C X / B X=C Y / B Y=5 / 4$, both these points lie on Γ_{B}. Moreover, by symmetry, these points are antipodal with respect to Γ_{B}, hence the segment $X Y$ is a diameter and thus the midpoint of $X Y$, which we will denote as M, is the center of Γ_{B}. Clearly, the radius of Γ_{B} is $M X=M Y=40$. Now, let the height of $A B C$ be h. Then, from similar reasoning as before, and similar triangles, we can see that the distance from the center of Γ_{C} and $B C$ is $\frac{16}{7} h$. Moreover, we can use the Pythagorean theorem to get that the radius of Γ_{C} is $\frac{12}{7} \sqrt{h^{2}+81}$. Using the Pythagorean theorem again, we get that the distance between the center of Γ_{C} and the center of Γ_{B} is $\frac{16}{7} \sqrt{h^{2}+529}$. We thus have the equation

$$
\frac{12}{7} \sqrt{h^{2}+81}+40=\frac{16}{7} \sqrt{h^{2}+529}
$$

which, after some algebra, is equivalent to

$$
\left(h^{2}+45\right)\left(h^{2}-2835\right)=0
$$

hence $h=\sqrt{2835}=9 \sqrt{35}$ and thus the area of $A B C$ is $81 \sqrt{35}$.

