Time limit: 60 minutes.
Instructions: This test contains 10 short answer questions. All answers must be expressed in simplest form unless specified otherwise. Only answers written inside the boxes on the answer sheet will be considered for grading.
No calculators.

1. Consider the figure below, where every small triangle is equilateral with side length 1 . Compute the area of the polygon $A E K S$.

2. A set of points in the plane is called full if every triple of points in the set are the vertices of a non-obtuse triangle. What is the largest size of a full set?
3. Let $A B C D$ be a parallelogram with $B C=17$. Let M be the midpoint of $B C$ and let N be the point such that $D A N M$ is a parallelogram. What is the length of segment $N C$?

4. The area of right triangle $A B C$ is 4 , and hypotenuse $A B$ is 12 . Compute the perimeter of $A B C$.
5. Find the area of the set of all points z in the complex plane that satisfy

$$
|z-3 i|+|z-4| \leq 5 \sqrt{2}
$$

6. Let $A B E$ be a triangle with $A B / 3=B E / 4=E A / 5$. Let $D \neq A$ be on line $A E$ such that $A E=E D$ and D is closer to E than to A. Moreover, let C be a point such that $B C D E$ is a parallelogram. Furthermore, let M be on line $C D$ such that $A M$ bisects $\angle B A E$, and let P be the intersection of $A M$ and $B E$. Compute the ratio of $P M$ to the perimeter of $A B E$.
7. Points $A B C D$ are vertices of an isosceles trapezoid, with $A B$ parallel to $C D, A B=1, C D=2$, and $B C=1$. Point E is chosen uniformly and at random on $C D$, and let point F be the point on $C D$ such that $E C=F D$. Let G denote the intersection of $A E$ and $B F$, not necessarily in the trapezoid. What is the probability that $\angle A G B>30^{\circ}$?
8. Let $A B C$ be a triangle with $A B=13, B C=14$, and $C A=15$. Let G denote the centroid of $A B C$, and let G_{A} denote the image of G under a reflection across $B C$, with G_{B} the image of G under a reflection across $A C$, and G_{C} the image of G under a reflection across $A B$. Let O_{G} be the circumcenter of $G_{A} G_{B} G_{C}$ and let X be the intersection of $A O_{G}$ with $B C$ and Y denote the intersections of $A G$ with $B C$. Compute $X Y$.
9. Let $A B C D$ be a tetrahedron with $\angle A B C=\angle A B D=\angle C B D=90^{\circ}$ and $A B=B C$. Let E, F, G be points on $A D, B D$, and $C D$, respectively, such that each of the quadrilaterals $A E F B, B F G C$, and $C G E A$ have an inscribed circle. Let r be the smallest real number such that area $(E F G) /$ area $(A B C) \leq r$ for all such configurations A, B, C, D, E, F, G. If r can be expressed as $\frac{\sqrt{a-b \sqrt{c}}}{d}$ where a, b, c, d are positive integers with $\operatorname{gc} d(a, b)$ squarefree and c squarefree, find $a+b+c+d$.
10. A $3-4-5$ point of a triangle $A B C$ is a point P such that the ratio $A P: B P: C P$ is equivalent to the ratio $3: 4: 5$. If $A B C$ is isosceles with base $B C=12$ and $A B C$ has exactly one $3-4-5$ point, compute the area of $A B C$.
