1. Compute the probability that a random permutation of the letters in BERKELEY does not have the three E's all on the same side of the Y.
Answer: $\frac{1}{2}$ or 0.5

Solution: In total, there are $\frac{8!}{3!}=56 \cdot 120$ permutations. Of these, if the Y is in slots $1-3$ (from the left), or slots 6-8 (from the left), then the 3 E's must be to the right or to the left of the Y, respectively. By symmetry, there are $2 \cdot\left(\binom{7}{3}+\binom{6}{3}+\binom{5}{3}\right) \cdot 4!=48 \cdot(35+20+10)=48 \cdot 65$ such permutations. In addition, the Y can also be in the middlemost two slots, in which case the E's can be either to the left or to the right of it. WLOG assume Y is in slot 4. There are $1 \cdot 4!=24$ permutations with the E's to the left and $\binom{4}{3} \cdot 4!=96$ with the E's to the right (since there are 4 spaces to the right of the Y), which yields 120 permutations in total in this case; multiplying by 2 yields an additional 240 for when the Y is in slot 4 or 5 . Note that $240=48 \cdot 5$, so in total, there are $48 \cdot 70$ invalid permutations out of $56 \cdot 120$ in total. This yields a probability that a permutation has all 3 E's on the same side as the Y of $\frac{48 \cdot 70}{56 \cdot 120}=\frac{48}{120} \cdot \frac{70}{56}=\frac{2}{5} \cdot \frac{5}{4}=\frac{1}{2}$, so by complementary counting, the probability is also | $\frac{1}{2}$ |
| :---: |
| that a permutation does not have all | 3 E's on the same side of Y.

2. Find the sum of first two integers $n>1$ such that 3^{n} is divisible by n and $3^{n}-1$ is divisible by $n-1$.

Answer: 30
Solution: Since 3^{n} is divisible n, we know that n must be a power of three. Let $n=3^{a}$. Then we have $3^{a}-1 \mid 3^{n}-1$, and using division theorem and simple algebraic manipulations, we can see that a must divide n. Therefore, the solution is in the form $n=3^{3^{a}}$, where a is any nonnegative integer. The first two such n are $3^{3^{0}}=3$ and $3^{3^{1}}=27$, and the sum is just 30 .
3. Let $\{\underline{a, b, c}, d, e, f, g, h\}$ be a permutation of $\{1,2,3,4,5,6,7,8\}$. What is the probability that $\overline{a b c}+\overline{d e f}$ is even?
Answer: $\frac{\mathbf{3}}{\mathbf{7}}$
Solution: Both c and f have to have the same parity so the total number of valid arrangements is $2 \cdot\binom{4}{2} \cdot 6!$, and the total number of permutations is 8 !. Thus, the answer is $\frac{3}{7}$

