1. How many multiples of 20 are also divisors of $17!$?

Answer: 7056
Solution: 17 ! $=2^{15} \times 3^{6} \times 5^{3} \times 7^{2} \times 11 \times 13 \times 17$. A multiple of 20 needs to be a multiple of $2^{2} \times 5$. Thus, the number of possible combinations of the factors are $14 \times 7 \times 3 \times 3 \times 2 \times 2 \times 2=7056$
2. Suppose for some positive integers, that $\frac{p+\frac{1}{q}}{q+\frac{1}{p}}=17$. What is the greatest integer n such that $\frac{p+q}{n}$ is always an integer?
Answer: 18
Solution: If we multiply both the top and bottom of the fraction, we'll get $\frac{p^{2} q+p}{q^{2} p+q}$, which can be factored as $\frac{p(p q+1)}{q(p q+1)}=\frac{p}{q}$, which means that we now have $\frac{p}{q}=17$. Since $p=17 q, p+q=18 q$, so 18 will always divide $p+q$.
3. Find the minimal N such that any N-element subset of $\{1,2,3,4, \ldots 7\}$ has a subset S such that the sum of elements of S is divisible by 7 .

Answer: 4

Solution: We see that $N>3$ since $1+2+3=6<7$. We see that $N \leq 4$ since any four element subset of $\{1,2,3, \ldots, 7\}$ has elements $x,-x$.
4. What is the remainder when 201820182018... [2018 times] is divided by 15 ?

Answer: 13
Solution: The sum of the digits is $11^{*} 2018 \equiv 2 * 2(\bmod 3) \equiv 1(\bmod 3)$. Since the last digit is 8 , the number is $\equiv 3(\bmod 5)$. By the Chinese Remainder Theorem, the number is $\equiv 13(\bmod$ 15).
5. If r_{i} are integers such that $0 \leq r_{i}<31$ and r_{i} satisfies the polynomial $x^{4}+x^{3}+x^{2}+x \equiv 30$ $(\bmod 31)$, find

$$
\sum_{i=1}^{4}\left(r_{i}^{2}+1\right)^{-1} \quad(\bmod 31)
$$

where x^{-1} is the modulo inverse of x, that is, it is the unique integer y such that $0<y<31$ and $x y-1$ is divisible by 31 .
Answer: 2
Solution: We can easily list out the squares modulo 31 to compute that $\sqrt{5}=6$. Thus, dividing both sides by x^{2} and moving the constant term to the other side, we have

$$
x^{2}+x+1+\frac{1}{x}+\frac{1}{x^{2}} \equiv\left(x+\frac{1}{x}\right)^{2}+\left(x+\frac{1}{x}\right)-1 \equiv 0 \quad(\bmod 31)
$$

Letting $u=x+\frac{1}{x}$ and solving the quadratic, we have

$$
u \equiv 18,12 \quad(\bmod 31)
$$

Note that if r is a root, then either

$$
r+\frac{1}{r} \equiv \frac{r^{2}+1}{r} \equiv 18 \quad(\bmod 31) \Longrightarrow \frac{1}{r^{2}+1}=\frac{1}{18 r}
$$

or

$$
r+\frac{1}{r} \equiv \frac{r^{2}+1}{r} \equiv 12 \quad(\bmod 31) \Longrightarrow \frac{1}{r^{2}+1}=\frac{1}{12 r}
$$

Summing up, we have

$$
1+1 \equiv 2 \equiv 29 \quad(\bmod 31)
$$

6. Ankit wants to create a pseudo-random number generator using modular arithmetic. To do so he starts with a seed x_{0} and a function $f(x)=2 x+25(\bmod 31)$. To compute the k th pseudo random number, he calls $g(k)$ defined as follows:

$$
g(k)= \begin{cases}x_{0} & \text { if } k=0 \\ f(g(k-1)) & \text { if } k>0\end{cases}
$$

If x_{0} is 2017, compute $\sum_{j=0}^{2017} g(j)(\bmod 31)$.
Answer: 21
Solution: We show that the function g is periodic with period 5 . Given $f(x)=a x+b(\bmod m)$, if $a^{y} \equiv 1(\bmod m)$ we will show that as long as $a \neq 1, g(k)$ relative to f is periodic with period y. $g(y)=a^{y} \cdot x+b \sum_{i=0}^{i=y-1} a^{i}$. We will show that the summation in this term is 0 as long as $a \neq 1$.

Proof. Let $S \equiv 1+a+a^{2}+\cdots+a^{x-1}(\bmod m)$. Then $a S \equiv a+a^{2}+a^{3}+\cdots+a^{x}(\bmod m)$. However, since $a^{x}=1, a S \equiv 1+a+a^{2}+\cdots+a^{x-1} \equiv S(\bmod m)$. This means that $a S \equiv S$ $(\bmod m)$. Since $a \neq 1, S=0$.

So we have $g(y)=a^{y} \cdot x_{0}=x_{0}$. Therefore, $g(k+y)=g(y)$ for all k. We now only need to compute the value x such that $2^{x} \equiv 1(\bmod 31)$. This is clearly 5 . Plugging in for values $i=1 \ldots i=5$. we get $2,29,25,5,4$ in modulo 31 , which is $61 \equiv-1(\bmod 31)$. Summing up to 2014 yields (3 403). Adding them to the values of g from 2015, 2016, 2017 we get our final answer of 25
7. Determine the number of ordered triples (a, b, c), with $0 \leq a, b, c \leq 10$ for which there exists (x, y) such that $a x^{2}+b y^{2} \equiv c(\bmod 11)$
Answer: 1221
Solution: Note that if a, b, c are not all divisible by 11 , then there exists a solution since the set

$$
\left\{a x^{2} \mid x \in \mathbb{Z}_{11}\right\}
$$

has 6 elements and the set

$$
\left\{c-b y^{2} \mid y \in \mathbb{Z}_{11}\right\}
$$

also has 6 elements. Therefore, the two sets have a nonempty intersection. We now count the number of non-triples, that is triples for which there do not exist such x and y. First, if $a=b=0$, all values of $c \neq 0$ is a nonsolution, giving a total of 10 in this case. Now suppose $a=0$ and $b \neq 0$. We will multiply by 2 to account for symmetry. The tuple is a nonsolution if and only if $c b^{-1}$ is not a quadratic residue. There are a total of 5 quadratic residues, so for a given $c \neq 0$, there exists 5 values of b that give a nonsolution. Thus, in this case, there are
$5 \times 10=50$ nonsolutions. Multiplying by 2 gives 100 nonsolutions. Finally, if $c=0$, then there are no non-solutions since one can choose $x=y=0$. This gives 110 total non-solutions. There are $11^{3}=1331$ pairs, and subtracting the nonsolutions, we arrive at $1331-110=1221$
8. How many $1<n \leq 2018$ such that the set $\{0,1,1+2, \ldots, 1+2+3+\cdots+i, \ldots, 1+2+\cdots+n-1\}$ is a permutation of $\{0,1,2,3,4, \cdots, n-1\}$ when reduced modulo n ?

Answer: 10

Solution: We first claim that all $n=2^{k}$ work. To show this, suppose not. Then there exists a sequence $a+a+1+a+2+\cdots+a+l=(l+1)+\frac{l(l+1)}{2} \equiv 0\left(\bmod 2^{k}\right)$. If l is odd, then $l+1+\frac{l(l+1)}{2}=\frac{l+1}{2}(2+l) \equiv 0\left(\bmod 2^{k}\right)$. But l is odd, so $2+l$ is odd, so $\frac{l+1}{2} \equiv 0\left(\bmod 2^{k}\right)$. This is a contradiction to $l<2^{k}$. If l is even, we have $(l+1)\left(1+\frac{l}{2}\right) \equiv 0\left(\bmod 2^{k}\right)$, so $1+\frac{l}{2} \equiv 0$ $\left(\bmod 2^{k}\right)$, again contradicting $l<2^{k}$. Hence, $n=2^{k}$ works. Now, if n has an odd divisor greater than 1 , let $2 m+1$ be the minimal odd divisor of n (e.g. a prime). Let $n=(2 m+1) k$. Then

$$
\sum_{i=k-m}^{k+m} i=\frac{(2 m+1) 2 k}{2}=(2 m+1) k=n
$$

Since there are 11 powers of two less than or equal to 2018 , the answer is 10 .
9. Compute the following:

$$
\sum_{x=0}^{99}\left(x^{2}+1\right)^{-1} \quad(\bmod 199)
$$

where x^{-1} is the value $0 \leq y \leq 199$ such that $x y-1$ is divisible by 199 .
Answer: 150
Solution: Note that 199 is prime.

Step 1: polynomial division

First, let us perform long division $\frac{x^{198}-1}{x^{2}+1}$

$$
x^{198}-1=P(x)\left(x^{2}+1\right)+c
$$

First, we see that the remainder must be of even degree, since if not, then P must be an odd function, but we see that $P(x)$ has a x^{196} term, a contradiction. Hence, the remainder is an even function, so the remainder is of an even degree, and therefore it is a constant. Secondly, we have $x^{2} \equiv-1$, so $x^{198}-1=\left(x^{2}\right)^{99}-1=-1-1=-2$. Therefore,

$$
x^{198}-1=P(x)\left(x^{2}+1\right)-2
$$

Step 2: Destroying the quotient

Let p be a prime. The following is a well-known fact:

$$
\sum_{n=1}^{p-1} n^{k} \equiv 0 \quad(\bmod p)
$$

if $p \neq 1(\bmod k)$

Proof. Let g be a generator of \mathbb{Z}_{p}. Then

$$
\sum_{n=1}^{p-1} n^{k} \equiv \sum_{n=0}^{p-2} g^{k n} \equiv \frac{g^{k(p-1)}-1}{g^{k}-1} \equiv 0 \quad(\bmod p)
$$

as desired.

Step 3: Putting everything together

Note that since $199 \equiv 3(\bmod 4)$ that the denominator of $\frac{1}{x^{2}+1}$ is never 0 as $x \in \mathbb{Z}_{199}$. Hence,

$$
-1 \equiv \sum_{x=0}^{198} \frac{x^{198}-1}{x^{2}+1} \equiv \sum_{x=0}^{198} P(x)-\sum_{x=0}^{198} \frac{2}{x^{2}+1} \equiv 0-\sum_{x=0}^{198} \frac{2}{x^{2}+1} \quad(\bmod 199)
$$

This implies that

$$
\sum_{x=0}^{198} \frac{2}{x^{2}+1} \equiv 1 \quad(\bmod 199)
$$

or that

$$
\sum_{x=0}^{99} \frac{1}{x^{2}+1} \equiv-\frac{1}{4} \equiv 150 \quad(\bmod 199)
$$

10. Evaluate the following

$$
\prod_{j=1}^{50}\left(2 \cos \left(\frac{4 \pi j}{101}\right)+1\right)
$$

Answer: - 1
Solution: Let $q=\exp \left(\frac{2 \pi}{101}\right)$, and let $n=\frac{2 \pi}{101}$. Then

$$
2 \cos \left(\frac{4 \pi j}{101}\right)+1=q^{2 j}+q^{-2 j}+1=\frac{q^{3 j}-q^{-3 j}}{q^{j}-q^{-j}}
$$

Hence, the product is equal to

$$
\prod_{j=1}^{50} \frac{q^{3 j}-q^{-3 j}}{q^{j}-q^{-j}}
$$

Note that as 3 "acts" on the set $S=\{1,2,3,4, \ldots, 50\}$ by multiplication, some elements get sent to $a \in S$ or $-a$ where $a \in S$. Note that if $3 i \equiv 3 j(\bmod 101) \Longrightarrow i \equiv j$, and furthermore that if $3 i \equiv-3 j(\bmod 101) \Longrightarrow i \equiv-j$, so i, j are not both in S. Hence, $3 \cdot S$ is equal to S except some elements are negative of what they were. Note that if $j \equiv-i(\bmod 101)$, then $q^{3 j}-q^{-3 j}=-\left(q^{3 i}-q^{-3 i}\right)$. Hence, the product is equal to the product of all the negative signs in $3 S$. We just need to determine if there are an even number or if there are an odd number of negative signs in $3 S$. Note that $3 \cdot 1,3 \cdot 2,3 \cdot 3, \ldots, 3 \cdot 16$ are all positive (all in S), $3 \cdot 17,3 \cdot 19,3 \cdot 20, \ldots 3 \cdot 21, \ldots, 3 \cdot 33$ are all negative (in the complement of S), $3 \cdot 34,3 \cdot 37, \ldots, 3 \cdot 50$ are all positive. Therefore, there are $33-17+1=17$ negative signs, and thus the product is -1

