1. What is the integer part of the following expression, which contains 2018 square roots?

$$
\sqrt{2018+\sqrt{2018+\sqrt{2018+\ldots}}}
$$

Answer: 45
Solution: Let

$$
y=\sqrt{2018+\sqrt{2018+\sqrt{2018+\ldots}}}
$$

Then $y^{2}=2018+y$, so solving for y, we have

$$
y=\frac{1+\sqrt{8073}}{2}
$$

We see that $90^{2}=8100$, so the integer part is

$$
\frac{1+89}{2}=45
$$

(Note that $\sqrt{2018+\sqrt{2018}}$ has integer part 45).
2. Let $a_{n+1}=\frac{a_{n}+b_{n}}{2}$ and $b_{n+1}=\frac{1}{\frac{1}{a_{n}}+\frac{1}{b_{n}}}$, with $a_{0}=13$ and $b_{0}=29$. What is $\lim _{n \rightarrow \infty} a_{n} b_{n}$?

Answer: 0
Solution: Let us look at $a_{n} b_{n} . a_{n} b_{n}=\frac{a_{n}+b_{n}}{2 \frac{a_{n}+b_{n}}{a_{n} b_{n}}}=\frac{a_{n}+b_{n}}{\frac{2}{a_{n}}+\frac{2}{b_{n}}}=\frac{1}{2} a_{n+1} b_{n+1}$ Thus, $a_{n} b_{n}$ decreases.
Thus, the limit is just 0
3. What is the 100 th derivative of $f(x)=e^{x} \cos (x)$ at $x=\pi$?

Answer: $4^{25} e^{\pi}$
Solution: We begin by looking at the first few derivatives: $f^{\prime}(x)=e^{x}(\cos (x)-\sin (x)) f^{\prime \prime}(x)=$ $-2 e^{x} \sin (x) f^{\prime \prime \prime}(x)=-2 e^{x}(\cos (x)-\sin (x)) f^{(4)}(x)=-4 e^{x} \cos (x)=-4 f(x)$ Continuing this on to the 100th derivative: $f^{(100)}=(-4)^{25} f(x)=-4^{25} f(x)$ So at $x=\pi$, the derivative is just $4^{25} e^{\pi}$
4. Compute the following limit:

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} \frac{n x^{n}}{\sqrt{4 x^{3}-x+1}} d x
$$

Answer: $\frac{1}{2}$
Solution: We use integration by parts. Let $u=\frac{1}{\sqrt{4 x^{3}-x+1}}$ and $d v=n x^{n}$. Then

$$
\begin{gathered}
d u=-\frac{1}{2} \frac{12 x^{2}-1}{\sqrt{\left(4 x^{3}-x+1\right)^{3}}} \\
v=\frac{n x^{n+1}}{n+1}
\end{gathered}
$$

Thus, we have

$$
\int_{0}^{1} \frac{n x^{n}}{\sqrt{4 x^{3}-x+1}} d x+\int_{0}^{1}\left(\frac{n x^{n+1}}{n+1}\right)\left(-\frac{1}{2} \frac{12 x^{2}-1}{\sqrt{\left(4 x^{3}-x+1\right)^{3}}}\right) d x=\frac{1}{2} \frac{n}{n+1}
$$

Note that

$$
\frac{n}{n+1} \rightarrow 1
$$

as n gets large and $x^{n+1} \rightarrow 0$ as n gets large for $x \in[0,1)$. Hence, the second integral goes to 0 as n gets large, and the right hand side goes to $\frac{1}{2}$. Therefore,

$$
\int_{0}^{1} \frac{n x^{n}}{\sqrt{4 x^{3}-x+1}}=\frac{1}{2}
$$

as desired.
5. What is

$$
\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\cos x}{1+e^{-x}} d x
$$

Answer: - 1
Solution: Let f be an even function. Consider the following integral:

$$
\int_{-a}^{a} \frac{f(x)}{1+e^{-x}} d x
$$

By symmetry:

$$
I=\int_{-a}^{a} \frac{f(x)}{1+e^{-x}} d x=\int_{-a}^{a} \frac{f(x)}{1+e^{x}} d x \Longrightarrow 2 I=\int_{-a}^{a} \frac{f(x)}{1+e^{-x}}+\frac{f(x)}{1+e^{x}} d x=\int_{-a}^{a} f(x) d x
$$

Now letting $f(x)=\cos (x)$, we obtain that

$$
2 I=\int_{-\pi / 2}^{\pi / 2} \cos (x) d x=2
$$

so the answer is 1 .
6. What is the value of:

$$
\sum_{n=1}^{\infty} \prod_{k=1}^{2 n} \cos \frac{k \pi}{2 n+1}
$$

Answer: $-\frac{1}{3}$

Solution: We begin by realizing that $\prod_{k=1}^{2 n} \cos \frac{k \pi}{2 n+1}$ is $(-1)^{n}(4)^{-n}$ Thus, the sum becomes $\sum_{n=1} \infty(-1)^{n}(4)^{-n}$, which is simply $-\frac{1}{3}$
7. What is the following limit:

$$
\lim _{x \rightarrow 0} \frac{\tan (3 x) \sin (4 x)+\sin (5 x) \tan (2 x)}{\tan (6 x) \sin (7 x) \cos (8 x)}
$$

Answer: $\frac{11}{21}$
Solution: To evaluate this limit, begin by replacing $\tan (n x)$ with $n x, \sin (n x)$ with $n x$, and $\cos (n x)$ with 1 , as these are the rough approximations of \sin , \cos, and tan near 0 . Plugging these into the original limit: $\lim _{x \rightarrow 0} \frac{\tan (3 x) \sin (4 x)+\sin (5 x) \tan (2 x)}{\tan (6 x) \sin (7 x) \cos (8 x)}=\lim _{x \rightarrow 0} \frac{(3 x)(4 x)+(5 x)(2 x)}{(6 x)(7 x)}$ This limit can then be simplified to $\frac{11}{21}$
8. What is the maximum radius of a circle tangent to the curves $y=e^{-x^{2}}$ and $y=-e^{-x^{2}}$ at two points each?
Answer: $\sqrt{\frac{1}{2}(\ln (2)+1)}$
Solution: Let us denote the radius as r, with x and y components x_{r} and y_{r}. From this, we have $x_{r}^{2}+y_{r}^{2}=r^{2}$, and the slope of the radial vector is $m=\frac{y}{x}$. This must be perpendicular to the curves, so we can solve: $\frac{-x}{y}=-2 x e^{-x^{2}}$ Solving this equation and plugging in our values of x_{r} and y_{r} into r, we arrive that $r=\sqrt{\frac{1}{2}(\ln (2)+1)}$
9. Compute

$$
\int_{-\infty}^{0} \frac{1}{x^{3}-1} d x
$$

Answer: $-\frac{2 \pi}{3 \sqrt{3}}$
Solution: We first perform partial fractions on

$$
\frac{1}{x^{3}-1}
$$

to obtain that

$$
\begin{gathered}
\int \frac{1}{x^{3}-1} d x=\int \frac{-x-2}{3\left(x^{2}+x+1\right)}+\frac{1}{3(x-1)} d x \\
\int \frac{1}{3(x-1)} d x=\frac{1}{3} \ln (x-1) \\
\int \frac{-x-2}{x^{2}+x+1} d x=\frac{1}{3} \int-\frac{2 x+1}{2\left(x^{2}+x+1\right)}-\frac{3}{2\left(x^{2}+x+1\right)} d x \\
\frac{1}{3} \int-\frac{2 x+1}{2\left(x^{2}+x+1\right)}-\frac{3}{2\left(x^{2}+x+1\right)} d x=-\frac{1}{6} \int \frac{2 x+1}{x^{2}+x+1}-\frac{1}{2} \int \frac{1}{x^{2}+x+1} d x
\end{gathered}
$$

Perform the substitution: $u=x^{2}+x+1$

$$
\begin{aligned}
& -\frac{1}{6} \int \frac{2 x+1}{x^{2}+x+1} d x=-\frac{1}{6} \int \frac{1}{u} d u=-\frac{\ln (u)}{6} \\
& -\frac{1}{2} \int \frac{1}{x^{2}+x+1} d x=-\frac{1}{2} \int \frac{1}{\left(x+\frac{1}{2}\right)^{2}+\frac{3}{4}} d x
\end{aligned}
$$

$$
\begin{gathered}
-\frac{1}{2} \int \frac{1}{\left(x+\frac{1}{2}\right)^{2}+\frac{3}{4}} d x=-\frac{1}{\sqrt{3}} \arctan \frac{2 x+1}{\sqrt{3}} \\
\int \frac{1}{x^{3}-1}=\frac{1}{3} \ln (1-x)-\frac{1}{6} \ln \left(x^{2}+x+1\right)-\frac{1}{\sqrt{3}} \arctan \frac{2 x+1}{\sqrt{3}}
\end{gathered}
$$

Evaluating this at $x=-\infty$ and $x=0$, we conclude that:

$$
\int_{-\infty}^{0} \frac{1}{x^{3}-1}=-\frac{2 \pi}{3 \sqrt{3}}
$$

10. Let T be defined by the recurrence relation $T_{n+1}=2 x T_{n}-T_{n-1}$ with $T_{0}=1$ and $T_{1}=x$. What is

$$
\sum_{n=2}^{\infty} \int_{0}^{1} T_{n} d x
$$

Answer: - 1
Solution: First, we claim that

$$
\int_{0}^{1} T_{n} d x=\frac{n \sin \frac{n \pi}{2}-1}{n^{2}-1}
$$

To prove this, note that T_{n} is the nth Tchebyshev polynomial. So in fact,

$$
\int_{0}^{1} T_{n} d x=-\int_{\frac{\pi}{2}}^{0} \cos (n x) \sin (x) d x=\int_{0}^{\frac{\pi}{2}} \cos (n x) \sin (x) d x
$$

and using integration by parts, we have

$$
\int \cos (n x) \sin (x) d x=\frac{n \sin (x) \sin (n x)+\cos (x) \cos (n x)}{n^{2}-1}+C
$$

so plugging in the limits we get our desired result. Thus,

$$
\sum_{n=2}^{\infty} \int_{0}^{1} T_{n} d x=\sum_{n=2}^{\infty} \frac{n \sin \frac{n \pi}{2}-1}{n^{2}-1}=\sum_{n=1}^{\infty}-\frac{1}{4 n^{2}-1}+\frac{1}{4 n+2}-\frac{1}{4 n-2}
$$

which "morally" converges to -1 by telescoping. (Note: a full rigorous proof will need background from real analysis, so will be omitted here).

