1. 130°
2. $\frac{1}{3}$
3. $\frac{27}{2}$
4. 13
5. 2
6. $\frac{4}{15}$
7. $\frac{10}{3}$
8. $\left(-\frac{\sqrt{3}}{2}, 1\right)$
9. $\frac{9}{10}$
10. $\frac{8}{5}$

P1. $\angle B X B^{\prime}=\angle A X A^{\prime}=\angle A Y A^{\prime}=\angle C Y C^{\prime}$. Thus arcs $B B^{\prime}$ and $C C^{\prime}$ have the subtend the same angle in circle C_{2}, so the corresponding segments are congruent.

- 1 point for a reasonably good diagram.
- 1 point for $\angle X A Y=\angle X A^{\prime} Y$.
- 2 points for relating angles in C_{1} with angles in C_{2}
- 2 points for concluding that equal segments follow from equal angles.

P2. Solution 1: Suppose that $A=(0,0), l$ is $y=0$, and the center of C_{1} is $(0, a)$. Suppose that C_{2} has a radius r and center (x, y). By tangency with $l, y=r$. By tangency with C_{1}, $x^{2}+(y-a)^{2}=(r+a)^{2} \Longleftrightarrow 4 y a=x^{2}$. Thus it is necessary any point in the locus lies on the parabola $y=\frac{x^{2}}{4 a}$. If we start with any point on the parabola, we can construct such a tangent circle with radius $r=y$ as long as $x \neq 0$, which results in a circle of zero radius where $B=A$. Thus the locus is $\left\{(x, y): x \neq 0\right.$ and $\left.y=\frac{x^{2}}{4 a}\right\}$. I.e. a parabola minus a point.
Solution 2: Note that a parabola is the locus of all points that are equidistant from a line and a point. Let the point be the center of C_{1} and the line l_{2} be a distance a away from line l (away from the circle). Any center of C_{2} is a distance $r_{1}+r_{2}$ away from l_{2} as well as O_{1}. The excluded point is excluded because that would involve a circle of radius 0 .

- 1 point for using the distance formula to set up the formula.
- 2 points for simplifying the formula into a parabola
- 2 points for the reverse argument (showing that a point on the parabola has a circle)
- 1 point for addressing the one point that is removed from the parabola

Solution 2 Rubric:

- 3 points for correctly defining the locus of the points defining a parabola
- 1 point for computing the distance from the center of C_{1} to the centers of C_{2}
- 1 point for computing the distance from the center of C_{1} to line l_{2}
- 1 point for addressing the one point that is removed from the parabola

